論文の概要: Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
- arxiv url: http://arxiv.org/abs/2503.24306v1
- Date: Mon, 31 Mar 2025 16:53:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:34:58.103502
- Title: Point Tracking in Surgery--The 2024 Surgical Tattoos in Infrared (STIR) Challenge
- Title(参考訳): 外科におけるポイントトラッキング-2024年赤外(STIR)における手術タトゥー-
- Authors: Adam Schmidt, Mert Asim Karaoglu, Soham Sinha, Mingang Jang, Ho-Gun Ha, Kyungmin Jung, Kyeongmo Gu, Ihsan Ullah, Hyunki Lee, Jonáš Šerých, Michal Neoral, Jiří Matas, Rulin Zhou, Wenlong He, An Wang, Hongliang Ren, Bruno Silva, Sandro Queirós, Estêvão Lima, João L. Vilaça, Shunsuke Kikuchi, Atsushi Kouno, Hiroki Matsuzaki, Tongtong Li, Yulu Chen, Ling Li, Xiang Ma, Xiaojian Li, Mona Sheikh Zeinoddin, Xu Wang, Zafer Tandogdu, Greg Shaw, Evangelos Mazomenos, Danail Stoyanov, Yuxin Chen, Zijian Wu, Alexander Ladikos, Simon DiMaio, Septimiu E. Salcudean, Omid Mohareri,
- Abstract要約: 外科手術における組織運動の定量化のためのポイントトラッキング課題であるSTIR Challenge 2024について述べる。
STIRチャレンジ2024は、精度と効率の2つの定量的要素から構成される。
本稿では,課題から得られた設計,提案,成果を要約する。
- 参考スコア(独自算出の注目度): 46.98282478106169
- License:
- Abstract: Understanding tissue motion in surgery is crucial to enable applications in downstream tasks such as segmentation, 3D reconstruction, virtual tissue landmarking, autonomous probe-based scanning, and subtask autonomy. Labeled data are essential to enabling algorithms in these downstream tasks since they allow us to quantify and train algorithms. This paper introduces a point tracking challenge to address this, wherein participants can submit their algorithms for quantification. The submitted algorithms are evaluated using a dataset named surgical tattoos in infrared (STIR), with the challenge aptly named the STIR Challenge 2024. The STIR Challenge 2024 comprises two quantitative components: accuracy and efficiency. The accuracy component tests the accuracy of algorithms on in vivo and ex vivo sequences. The efficiency component tests the latency of algorithm inference. The challenge was conducted as a part of MICCAI EndoVis 2024. In this challenge, we had 8 total teams, with 4 teams submitting before and 4 submitting after challenge day. This paper details the STIR Challenge 2024, which serves to move the field towards more accurate and efficient algorithms for spatial understanding in surgery. In this paper we summarize the design, submissions, and results from the challenge. The challenge dataset is available here: https://zenodo.org/records/14803158 , and the code for baseline models and metric calculation is available here: https://github.com/athaddius/STIRMetrics
- Abstract(参考訳): 手術における組織の動きを理解することは、セグメンテーション、3D再構成、仮想組織ランドマーク、自律型プローブベースのスキャン、サブタスクの自律性といった下流タスクに応用するために重要である。
ラベル付きデータは、アルゴリズムの定量化と訓練を可能にするため、これらの下流タスクでアルゴリズムを可能にするために不可欠である。
本稿では,量子化のためのアルゴリズムを参加者が提出できる点追跡課題を提案する。
提案したアルゴリズムは、赤外線(STIR)における外科的タトゥー(英語版)と呼ばれるデータセットを用いて評価され、課題は適宜STIR Challenge 2024と命名される。
STIRチャレンジ2024は、精度と効率の2つの定量的要素から構成される。
精度成分は、in vivoおよびex vivo配列上のアルゴリズムの精度をテストする。
効率成分はアルゴリズム推論のレイテンシをテストする。
この挑戦はMICCAI EndoVis 2024の一部として行われた。
このチャレンジでは、合計8つのチームが参加し、4つのチームが事前に、そして4つのチームがチャレンジデイ後に提出しました。
本稿では,手術における空間的理解のための,より正確かつ効率的なアルゴリズムに向けてのSTIR Challenge 2024について述べる。
本稿では,課題から得られた設計,提案,成果を要約する。
チャレンジデータセットは以下の通りである。 https://zenodo.org/records/14803158 。
関連論文リスト
- Multi-Class Segmentation of Aortic Branches and Zones in Computed Tomography Angiography: The AortaSeg24 Challenge [55.252714550918824]
AortaSeg24 MICCAI Challengeは、23の臨床的に関連する大動脈枝と領域に注釈付き100 CTA巻の最初のデータセットを導入した。
本稿では,トップパフォーマンスアルゴリズムの課題設計,データセットの詳細,評価指標,詳細な分析について述べる。
論文 参考訳(メタデータ) (2025-02-07T21:09:05Z) - The Ninth NTIRE 2024 Efficient Super-Resolution Challenge Report [180.94772271910315]
本稿は,NTIRE 2024の課題を概観し,効率的な単一画像超解像(ESR)ソリューションに焦点をあてる。
主な目的は、ランタイム、パラメータ、FLOPなどの様々な側面を最適化するネットワークを開発することである。
このチャレンジには262人の登録参加者が参加し、34チームが有効な応募を行った。
論文 参考訳(メタデータ) (2024-04-16T07:26:20Z) - Searching for Effective Neural Network Architectures for Heart Murmur
Detection from Phonocardiogram [5.183688633606942]
George B. Moody PhysioNet Challenge 2022は、超音波心電図(PCGs)による心室検出と心機能異常の同定の問題を提起した。
この研究は、我々のチームであるRevengerがこれらの問題を解決するために開発した新しいアプローチについて述べます。
論文 参考訳(メタデータ) (2023-03-06T09:31:42Z) - SurgT challenge: Benchmark of Soft-Tissue Trackers for Robotic Surgery [10.895748170187638]
本稿では,MICCAI 2022と共に編成されたSurgT: Surgery Trackingについて紹介する。
参加者は軟組織の動きを追跡するアルゴリズムを開発するタスクを割り当てられた。
課題の最後に、開発したメソッドは以前に隠されたテストサブセットに基づいて評価された。
論文 参考訳(メタデータ) (2023-02-06T18:57:30Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
2-Twin Transfusion Syndrome (TTTS) に対するレーザー光凝固法が広く採用されている。
このプロシージャは、視野が限られたこと、フェトスコープの操作性が悪いこと、視認性が悪いこと、照明の変動性のために特に困難である。
コンピュータ支援介入(CAI)は、シーン内の重要な構造を特定し、ビデオモザイクを通して胎児の視野を広げることで、外科医に意思決定支援と文脈認識を提供する。
7つのチームがこの課題に参加し、そのモデルパフォーマンスを、6フェットから658ピクセルの注釈付き画像の見当たらないテストデータセットで評価した。
論文 参考訳(メタデータ) (2022-06-24T23:44:42Z) - AutoML Segmentation for 3D Medical Image Data: Contribution to the MSD
Challenge 2018 [2.9864637081333085]
エンコーダ・デコーダアーキテクチャを用いた3次元畳み込みニューラルネットワークを開発し,本論文で述べる。
異方性ボキセルゲメトリーで作用し、異方性深さを持つ。
論文 参考訳(メタデータ) (2020-05-20T11:47:02Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
腹腔鏡装置の術中追跡は、しばしばコンピュータとロボットによる介入の必要条件である。
本研究の課題は,30の手術症例から取得した10,040枚の注釈画像からなる外科的データセットに基づいていた。
結果は、初期仮説、すなわち、アルゴリズムの性能がドメインギャップの増大とともに低下することを確認する。
論文 参考訳(メタデータ) (2020-03-23T14:35:08Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。