論文の概要: Self-Supervised Pretraining for Aerial Road Extraction
- arxiv url: http://arxiv.org/abs/2503.24326v1
- Date: Mon, 31 Mar 2025 17:14:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:37:35.983262
- Title: Self-Supervised Pretraining for Aerial Road Extraction
- Title(参考訳): 航空路抽出のための自己監督型事前訓練
- Authors: Rupert Polley, Sai Vignesh Abishek Deenadayalan, J. Marius Zöllner,
- Abstract要約: 航空画像分割のための深層ニューラルネットワークのための自己教師付き事前学習法を提案する。
提案手法では,空中画像の欠落した領域の再構成をモデルで学習する。
実験により、特に低データ状態において、プレトレーニングがセグメンテーションの精度を大幅に向上させることが示された。
- 参考スコア(独自算出の注目度): 11.311414617703308
- License:
- Abstract: Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
- Abstract(参考訳): 空中画像セグメンテーションのためのディープニューラルネットワークは、大量のラベル付きデータを必要とするが、正確なアノテーションを持つ高品質な空中データセットは、生成に不足してコストがかかる。
この制限に対処するため,ラベル付きデータへの依存を低減しつつセグメンテーション性能を向上させる自己教師付き事前学習手法を提案する。
提案手法では, 道路抽出のために微調整される前に, 空中画像中の欠落した領域を再現し, 固有の構造を捉える。
この方法は一般化を改善し、ドメインシフトに対する堅牢性を高め、モデルアーキテクチャやデータセットの選択に不変である。
実験の結果,特に低データ状態において,プレトレーニングによりセグメンテーション精度が著しく向上し,航空画像解析のスケーラブルなソリューションとなった。
関連論文リスト
- Re-Visible Dual-Domain Self-Supervised Deep Unfolding Network for MRI Reconstruction [48.30341580103962]
本稿では、これらの問題に対処するために、新しい再視覚的二重ドメイン自己教師型深層展開ネットワークを提案する。
エンド・ツー・エンドの再構築を実現するために,シャンブルとポック・プロキシ・ポイント・アルゴリズム(DUN-CP-PPA)に基づく深層展開ネットワークを設計する。
高速MRIおよびIXIデータセットを用いて行った実験により,本手法は再建性能において最先端の手法よりも有意に優れていることが示された。
論文 参考訳(メタデータ) (2025-01-07T12:29:32Z) - Few-Shot Airway-Tree Modeling using Data-Driven Sparse Priors [0.0]
限られたアノテートデータのみを使用して事前訓練されたモデルを転送するには、少ないショットの学習アプローチが費用対効果がある。
我々は,肺CTスキャンにおいて,気道の効率を高めるために,データ駆動型スペーシフィケーションモジュールを訓練する。
次に、これらのスパース表現を標準教師付きセグメンテーションパイプラインに組み込み、DLモデルの性能を高めるための事前学習ステップとする。
論文 参考訳(メタデータ) (2024-07-05T13:46:11Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - Self-Supervised Pretraining for 2D Medical Image Segmentation [0.0]
自己教師付き学習は、不正なデータに対して特定のドメインのモデルを事前訓練することで、手動でアノテートされたデータの必要性を下げる手段を提供する。
自然画像と対象領域固有の画像による自己教師付き事前学習は、最も速く、最も安定した下流収束をもたらす。
低データシナリオでは、教師付きImageNet事前トレーニングが最も正確であり、最小限のエラーに近づくためには100以上の注釈付きサンプルが必要である。
論文 参考訳(メタデータ) (2022-09-01T09:25:22Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Self-Supervised Pre-Training for Transformer-Based Person
Re-Identification [54.55281692768765]
トランスフォーマーに基づく教師付き事前訓練は、人物再識別(ReID)において大きなパフォーマンスを達成する
ImageNetとReIDデータセットのドメインギャップのため、通常、パフォーマンスを高めるために、より大きなトレーニング済みデータセットが必要です。
この研究は、データとモデル構造の観点から、事前トレーニングデータセットとReIDデータセットのギャップを軽減することを目的としている。
論文 参考訳(メタデータ) (2021-11-23T18:59:08Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Efficient Conditional Pre-training for Transfer Learning [71.01129334495553]
本稿では,事前学習データセットから関連するサブセットを選択するための効率的なフィルタリング手法を提案する。
我々は、教師なし設定と教師なし設定の両方において、ImageNetで事前トレーニングを行うことで、我々の技術を検証する。
我々は、サブセットで利用可能なモデルをチューニングし、大規模なデータセットからフィルタリングされたデータセットで事前トレーニングすることで、標準のImageNet事前トレーニングを1~3%改善する。
論文 参考訳(メタデータ) (2020-11-20T06:16:15Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Improving Semantic Segmentation via Self-Training [75.07114899941095]
半教師付きアプローチ,特に自己学習パラダイムを用いて,最先端の成果を得ることができることを示す。
まず、ラベル付きデータに基づいて教師モデルを訓練し、次にラベルなしデータの大規模なセット上で擬似ラベルを生成する。
私たちの堅牢なトレーニングフレームワークは、人名と擬似ラベルを共同で消化し、Cityscapes、CamVid、KITTIデータセット上で最高のパフォーマンスを達成することができます。
論文 参考訳(メタデータ) (2020-04-30T17:09:17Z) - Domain Adaptive Transfer Attack (DATA)-based Segmentation Networks for
Building Extraction from Aerial Images [3.786567767772753]
本稿では,航空画像から抽出するドメイン適応トランスファー攻撃方式に基づくセグメンテーションネットワークを提案する。
提案システムは,ドメイン転送と敵攻撃の概念を組み合わせたシステムである。
3つの異なるデータセットに対して、データセット間の実験とアブレーション実験を行った。
論文 参考訳(メタデータ) (2020-04-11T06:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。