論文の概要: Query and Conquer: Execution-Guided SQL Generation
- arxiv url: http://arxiv.org/abs/2503.24364v1
- Date: Mon, 31 Mar 2025 17:43:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 14:36:32.299003
- Title: Query and Conquer: Execution-Guided SQL Generation
- Title(参考訳): Query and Conquer: Execution-Guided SQL Generation
- Authors: Łukasz Borchmann, Marek Wydmuch,
- Abstract要約: 本稿では,テキスト・ツー・タスクの精度を大幅に向上させる複雑な出力を生成する新しい手法を提案する。
提案手法は,複数の候補から最もセマンティックに一貫性のあるクエリを選択するために,実行結果を活用する。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License:
- Abstract: We propose a novel approach for generating complex outputs that significantly improves accuracy in text-to-SQL tasks. Our method leverages execution results to select the most semantically consistent query from multiple candidates, enabling smaller, cost-effective models to surpass computationally intensive reasoning methods such as o1, o3-mini, and DeepSeek R1 while reducing inference cost by as much as 30 times. It integrates effortlessly with existing models, offering a practical and scalable pathway to state-of-the-art SQL generation.
- Abstract(参考訳): 本稿では,テキストからSQLへのタスクの精度を大幅に向上させる,複雑な出力を生成する新しい手法を提案する。
提案手法は,複数の候補から最もセマンティックに一貫性のあるクエリを抽出し,より小型でコスト効率のよいモデルで,o1,o3-mini,DeepSeek R1などの計算集約的推論手法を克服し,推論コストを最大30倍に削減する。
既存のモデルと懸命に統合し、最先端のSQL生成への実用的でスケーラブルなパスを提供する。
関連論文リスト
- STaR-SQL: Self-Taught Reasoner for Text-to-SQL [20.719165038519744]
チェーンオブ思考」の理論的根拠は、複雑な推論タスクにおける大規模言語モデルの性能向上に有効であることが証明されている。
テキスト駆動のような構造化されたタスクにそのようなテクニックを適用することは、ほとんど探索されていない。
本稿では、クエリ生成を推論プロセスとして再編成する新しいアプローチである、テキスト駆動型セルフトレーサ(STaR-)を提案する。
挑戦的なスパイダーベンチマークの実験結果によると、STaR-はテキストからパフォーマンスを大幅に改善し、86.6%の精度を実現している。
これらの知見は、推論強化トレーニングの可能性を強調している。
論文 参考訳(メタデータ) (2025-02-19T08:58:44Z) - Rationalization Models for Text-to-SQL [13.792561265515003]
本稿では,テキスト・ツー・シークレット・モデルの微調整を強化するために,CoT(Chain-of-Thought)論理を生成するフレームワークを提案する。
プロセスは、手動でサンプルの小さなセットをアノテートすることから始まり、その後、大きな言語モデルを促すために使用される。
その後、検証されたクエリに基づいて合理化モデルをトレーニングし、広範な合成CoTアノテーションを可能にする。
論文 参考訳(メタデータ) (2025-02-10T18:38:57Z) - Leveraging Foundation Language Models (FLMs) for Automated Cohort Extraction from Large EHR Databases [50.552056536968166]
本稿では,2つの大規模かつ広くアクセス可能なEHRデータベース上で列マッチングを自動化するアルゴリズムを提案し,評価する。
提案手法は,学習済みの小型汎用言語モデルを用いて,13ドル列のうち12ドルを正確にマッチングし,高いトップ3の精度を92%の精度で達成する。
論文 参考訳(メタデータ) (2024-12-16T06:19:35Z) - CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL [9.47170756607886]
CHASE-は、マルチエージェントモデリングにおけるテスト時間計算を用いて、候補生成と選択を改善する革新的な戦略を利用する新しいフレームワークである。
最適な候補を特定するために、選別エージェントを用いて、微調整された二項候補選択LLMとのペア比較により候補をランク付けする。
提案したCHASE-は、BIRD Text-to- datasetベンチマークのテストセットと開発セットにおいて、73.0%と73.01%の最先端実行精度を実現している。
論文 参考訳(メタデータ) (2024-10-02T18:41:35Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
効率的でスケーラブルなテキスト・ツー・クエリのためのフレームワークであるCHESSを紹介します。
特殊エージェントは4つあり、それぞれが上記の課題の1つをターゲットにしている。
私たちのフレームワークは、さまざまなデプロイメント制約に適応する機能を提供する。
論文 参考訳(メタデータ) (2024-05-27T01:54:16Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
大規模言語モデル(LLM)は、テキストからタスクへの微調整アプローチを大幅に上回る、ICL(In-context Learning)ベースの手法を実現している。
本研究は,LLMのプロンプトに対する感受性を考察し,複数のプロンプトを活用してより広い探索空間を探索する手法を提案する。
生成したクエリの精度と効率の両面から,BIRD上に新たなSOTA性能を確立する。
論文 参考訳(メタデータ) (2024-05-13T04:59:32Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
Prompt"は、Text-to-LLMのいくつかのショットプロンプト機能を改善するように設計されている。
Prompt"は、ラベル付きデータが少なく、テキスト内学習における従来のアプローチよりも大きなマージンで優れている。
emphPromptはテキスト内学習における従来の手法よりも優れており,ラベル付きデータはほとんどない。
論文 参考訳(メタデータ) (2023-11-06T05:24:06Z) - JoinGym: An Efficient Query Optimization Environment for Reinforcement
Learning [58.71541261221863]
結合順序選択(JOS)は、クエリの実行コストを最小化するために結合操作を順序付けする問題である。
木質強化学習(RL)のためのクエリ最適化環境JoinGymを提案する。
JoinGymは内部で、事前計算されたデータセットから中間結果の濃度を調べることで、クエリプランのコストをシミュレートする。
論文 参考訳(メタデータ) (2023-07-21T17:00:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
本稿では,大規模言語モデル(LLM)を用いたテキスト・ツー・フィルタリングのフレームワークを提案する。
数発のプロンプトで、実行ベースのエラー解析による一貫性復号化の有効性について検討する。
命令の微調整により、チューニングされたLLMの性能に影響を及ぼす重要なパラダイムの理解を深める。
論文 参考訳(メタデータ) (2023-05-26T21:39:05Z) - Wav2SQL: Direct Generalizable Speech-To-SQL Parsing [55.10009651476589]
Speech-to-Spider (S2Spider) は、与えられたデータベースに対する音声質問をsqlクエリに変換することを目的としている。
ケースドシステム間の誤り合成を回避した,最初の直接音声-話者パーシングモデルWav2を提案する。
実験結果から,Wav2は誤差混成を回避し,ベースラインの精度を最大2.5%向上させることで最先端の結果が得られることがわかった。
論文 参考訳(メタデータ) (2023-05-21T19:26:46Z) - Proton: Probing Schema Linking Information from Pre-trained Language
Models for Text-to-SQL Parsing [66.55478402233399]
本稿では,ポアンカー距離測定に基づく探索手法を用いて,関係構造を抽出する枠組みを提案する。
スキーマリンクの一般的なルールベース手法と比較して,探索関係は意味的対応をしっかりと捉えることができることがわかった。
我々のフレームワークは3つのベンチマークで最先端のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-06-28T14:05:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。