Harvesting Information Across the Horizon
- URL: http://arxiv.org/abs/2504.00083v2
- Date: Mon, 07 Apr 2025 20:04:34 GMT
- Title: Harvesting Information Across the Horizon
- Authors: S. Wang, M. R. Preciado Rivas, R. B. Mann,
- Abstract summary: Infalling detectors near a (2+1)-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole can harvest entanglement.<n>We find that black holes--even the simplest kind having constant curvature--significantly affect the correlation properties of quantum fields in the vacuum state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The effect of black holes on entanglement harvesting has been of considerable interest over the past decade. Research involving stationary Unruh-DeWitt (UDW) detectors near a (2+1)-dimensional Ba\~nados-Teitelboim-Zanelli (BTZ) black hole has uncovered phenomena such as entanglement shadows, entanglement amplification through black hole rotation, and differences between bipartite and tripartite entanglement. For a (1+1)-dimensional Schwarzschild black hole, it has been shown that two infalling UDW detectors can harvest entanglement from the scalar quantum vacuum even when separated by an event horizon. In this paper, we calculate the mutual information between two UDW detectors coupled to a massless quantum scalar field, with the detectors starting at rest and falling radially into a non-rotating (2+1)-dimensional BTZ black hole. The trajectory of the detectors includes regions where both detectors are switched on outside of the horizon; where one detector is switched on inside of the horizon while the other switches on outside; and where both detectors switch on inside of the horizon. We investigate different black hole masses, detector energy gaps, widths and temporal separations of the detector switching functions, and field boundary conditions. We find that black holes--even the simplest kind having constant curvature--significantly affect the correlation properties of quantum fields in the vacuum state. These correlations, both outside and inside the horizon, can be mapped out by infalling detectors.
Related papers
- Deep in the knotted black hole [0.0]
We consider the transition rate of a detector in the Banados-Teitelboim-Zanelli (BTZ) black hole as it freely falls toward and across the horizon.<n>We find outside the horizon that the rates are qualitatively similar, but with the amplitude in the geon spacetime larger than in the BTZ case.<n>In general, the detector can act as an early warning system' that both spots the black hole horizon and discerns its interior topology.
arXiv Detail & Related papers (2024-12-03T19:00:06Z) - Singular Excitement Beyond the Horizon of a Rotating Black Hole [4.003194245289446]
We numerically compute the detector's transition rate for different values of black hole mass, black hole angular momentum, detector energy gap, and field boundary conditions at infinity.
Our results lead to a more generalized description of the behaviour of particle detectors in BTZ black hole spacetime.
arXiv Detail & Related papers (2024-07-01T18:00:01Z) - Gate-Tunable Spin-Orbit Coupling in a Germanium Hole Double Quantum Dot [19.029069649697824]
Hole spins confined in semiconductor quantum dot systems have gained considerable interest for their strong spin-orbit interactions (SOIs)
Here we experimentally demonstrate a tunable SOI in a double quantum dot in a Germanium (Ge) hut wire (HW)
This tunability of the SOI could pave the way toward the realization of high-fidelity qubits in Ge HW systems.
arXiv Detail & Related papers (2022-06-08T02:44:31Z) - Gravitational orbits, double-twist mirage, and many-body scars [77.34726150561087]
We explore the implications of stable gravitational orbits around an AdS black hole for the boundary conformal field theory.
The orbits are long-lived states that eventually decay due to gravitational radiation and tunneling.
arXiv Detail & Related papers (2022-04-20T19:18:05Z) - Gravitationally Lensed Black Hole Emission Tomography [21.663531093434127]
We propose BH-NeRF, a novel tomography approach that leverages gravitational lensing to recover the continuous 3D emission field near a black hole.
Our method captures the unknown emission field using a continuous volumetric function parameterized by a coordinate-based neural network.
This work takes the first steps in showing how future measurements from the Event Horizon Telescope could be used to recover evolving 3D emission around the supermassive black hole in our Galactic center.
arXiv Detail & Related papers (2022-04-07T20:09:51Z) - Entanglement of Nambu Spinors and Bell Inequality Test Without Beam
Splitters [9.47332522010253]
We produce entanglement encoded in the Nambu spinor or electron-hole components of quasiparticles excited in quantum Hall edge states.
Our work opens a new route for probing quasiparticle entanglement in solid-state physics exempt from traditional beam splitters.
arXiv Detail & Related papers (2022-02-09T07:17:21Z) - Entanglement Harvesting with a Twist [0.0]
We investigate entanglement outside of an $mathbbRP$ geon by considering the entanglement structure of the vacuum state of a quantum field in this spacetime.
We find that detectors with a small energy gap harvest more entanglement in the BTZ spacetime.
As the energy gap increases, the detectors harvest more entanglement in a geon spacetime.
arXiv Detail & Related papers (2022-01-26T19:00:00Z) - Quantum simulation of Hawking radiation and curved spacetime with a
superconducting on-chip black hole [18.605453401936643]
We report a fermionic lattice-model-type realization of an analogue black hole by using a chain of 10 superconducting transmon qubits with interactions mediated by 9 transmon-type tunable couplers.
The quantum walks of quasi-particle in the curved spacetime reflect the gravitational effect near the black hole, resulting in the behaviour of stimulated Hawking radiation.
arXiv Detail & Related papers (2021-11-22T10:17:23Z) - Six-point functions and collisions in the black hole interior [71.67770216265583]
We consider two signals sent from the boundaries into the black hole interior shared between the two regions.
We compute three different out-of-time-order six-point functions to quantify various properties of the collision.
arXiv Detail & Related papers (2021-05-26T18:01:23Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Harvesting Entanglement with Detectors Freely Falling into a Black Hole [0.0]
We consider two pointlike Unruh-DeWitt (UDW) detectors in different combinations of free-falling and static trajectories.
We show that the previously known entanglement shadow' near the horizon is indeed absent for the case of two free-falling-detectors.
arXiv Detail & Related papers (2021-02-18T19:00:03Z) - Entanglement Amplification from Rotating Black Holes [0.0]
We study entanglement harvesting in the presence of a rotating BTZ black hole.
We find that rotation can significantly amplify the harvested vacuum entanglement.
We also find that the entanglement shadow -- a region near the black hole from which entanglement cannot be extracted -- is diminished in size as the black hole's angular momentum increases.
arXiv Detail & Related papers (2020-10-27T18:00:01Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.