Heading towards an Algebraic Heisenberg Cut
- URL: http://arxiv.org/abs/2412.16574v2
- Date: Sun, 09 Feb 2025 15:30:09 GMT
- Title: Heading towards an Algebraic Heisenberg Cut
- Authors: Mathias Van Den Bossche, Philippe Grangier,
- Abstract summary: We show that early signs of macroscopic behaviour appear before infinity.
This lays the grounds for justifying the inclusion in quantum physics of the ITP formalism.
- Score: 0.0
- License:
- Abstract: In previous papers we have explained how a sequence of theorems by John von Neumann on infinite tensor products (ITP) can be understood as providing elements to support both sectorisation of the Hilbert space of large quantum systems, and a mechanism of self decoherence thereof. These two effects may help understanding the articulation of the classical and quantum realms. However, as they involve considering an infinite number of quantum degrees of freedom, legitimate concerns can be raised on their applicability. In this paper, we address explicitly the interface between both realms through the example of a simplified model of a photon polarisation measurement device. Guided by the fact that there is von Neumann sectorisation at infinity, and by the necessity of classical contexts to perform measurements, we show that this limit can be under control, and that although the full force of the sectorisation theorems requires taking the infinite limit, early signs of the macroscopic behaviour appear before infinity. In our example, this shows up in photodiodes through diverging electron avalanches that simultaneously make the system classical, localise it randomly in a macroscopic sector and provide a macroscopic signal. This lays the grounds for justifying the inclusion in quantum physics of the ITP formalism, which involves non-separable Hilbert spaces and potentially type-III von Neumann algebras. Such an approach could make sense of the quantum-classical transition as a primarily algebraic one.
Related papers
- A classical model for semiclassical state-counting [0.0]
Akers and I have shown that the entropy difference of microcanonical states has a relative state-counting interpretation.
This paper explains some of the curious features of relative state-counting by analogy to the classical limit of quantum statistical mechanics.
arXiv Detail & Related papers (2025-01-27T19:00:20Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Dilation theorem via Schr\"odingerisation, with applications to the
quantum simulation of differential equations [29.171574903651283]
Nagy's unitary dilation theorem in operator theory asserts the possibility of dilating a contraction into a unitary operator.
In this study, we demonstrate the viability of the recently devised Schr"odingerisation approach.
arXiv Detail & Related papers (2023-09-28T08:55:43Z) - Connecting classical finite exchangeability to quantum theory [45.76759085727843]
Exchangeability is a fundamental concept in probability theory and statistics.
It allows to model situations where the order of observations does not matter.
It is well known that both theorems do not hold for finitely exchangeable sequences.
arXiv Detail & Related papers (2023-06-06T17:15:19Z) - Revisiting Quantum Contextuality in an Algebraic Framework [0.0]
We discuss the ideas of extracontextuality and extravalence, that allow one to relate Kochen-Specker's and Gleason's theorems.
Our extracontextual approach requires however a way to describe the Heisenberg cut''
arXiv Detail & Related papers (2023-04-16T12:06:44Z) - Groupoid and algebra of the infinite quantum spin chain [0.0]
We show how these algebras naturally arise in the Schwinger description of the quantum mechanics of an infinite spin chain.
In particular, we use the machinery of Dirac-Feynman-Schwinger states developed in recent works to introduce a dynamics based on the modular theory by Tomita-Takesaki.
arXiv Detail & Related papers (2023-02-02T12:24:23Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Contextual unification of classical and quantum physics [0.0]
We develop the idea that the usual formalism of quantum mechanics stops working when countable infinities of particles are encountered.
This is because the dimension of the corresponding Hilbert space becomes uncountably infinite, leading to the loss of unitary equivalence.
We show that it provides a natural way to describe the "Heisenberg cut", as well as a unified mathematical model including both quantum and classical physics.
arXiv Detail & Related papers (2022-09-03T16:51:19Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Emergence of classical behavior in the early universe [68.8204255655161]
Three notions are often assumed to be essentially equivalent, representing different facets of the same phenomenon.
We analyze them in general Friedmann-Lemaitre- Robertson-Walker space-times through the lens of geometric structures on the classical phase space.
The analysis shows that: (i) inflation does not play an essential role; classical behavior can emerge much more generally; (ii) the three notions are conceptually distinct; classicality can emerge in one sense but not in another.
arXiv Detail & Related papers (2020-04-22T16:38:25Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.