論文の概要: SAVeD: Learning to Denoise Low-SNR Video for Improved Downstream Performance
- arxiv url: http://arxiv.org/abs/2504.00161v2
- Date: Mon, 13 Oct 2025 03:16:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-14 15:48:08.347281
- Title: SAVeD: Learning to Denoise Low-SNR Video for Improved Downstream Performance
- Title(参考訳): SAVeD: ダウンストリームパフォーマンスを改善するために低SNRビデオのノイズ化を学ぶ
- Authors: Suzanne Stathatos, Michael Hobley, Pietro Perona, Markus Marks,
- Abstract要約: 低信号対雑音比ビデオはコンピュータビジョンモデルに重大な課題をもたらす。
下流作業用ビデオ(SAVeD)における時空間増強とデノナイジングについて述べる。
SAVeDは、生ノイズデータのみを用いて低SNRセンサ映像をノイズ化する、新しい自己教師方式である。
- 参考スコア(独自算出の注目度): 13.822183572026802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low signal-to-noise ratio videos -- such as those from underwater sonar, ultrasound, and microscopy -- pose significant challenges for computer vision models, particularly when paired clean imagery is unavailable. We present Spatiotemporal Augmentations and denoising in Video for Downstream Tasks (SAVeD), a novel self-supervised method that denoises low-SNR sensor videos using only raw noisy data. By leveraging distinctions between foreground and background motion and exaggerating objects with stronger motion signal, SAVeD enhances foreground object visibility and reduces background and camera noise without requiring clean video. SAVeD has a set of architectural optimizations that lead to faster throughput, training, and inference than existing deep learning methods. We also introduce a new denoising metric, FBD, which indicates foreground-background divergence for detection datasets without requiring clean imagery. Our approach achieves state-of-the-art results for classification, detection, tracking, and counting tasks, and it does so with fewer training resource requirements than existing deep-learning-based denoising methods. Project page: https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD
- Abstract(参考訳): 水中ソナー、超音波、顕微鏡などの低信号対雑音比ビデオは、特にペアのきれいな画像が利用できない場合、コンピュータビジョンモデルにとって大きな課題となる。
SAVeDは,低SNRセンサ映像を生ノイズデータのみを用いて自己監督する手法である。
SAVeDは、前景と背景の運動の区別を利用して、より強力なモーション信号でオブジェクトを誇張することにより、前景の視認性を高め、クリーンなビデオを必要としない背景とカメラのノイズを低減する。
SAVeDには、既存のディープラーニングメソッドよりも高速なスループット、トレーニング、推論をもたらす一連のアーキテクチャ最適化がある。
また、クリーンな画像を必要とすることなく、検出データセットに対する前景背景のばらつきを示す新しいデノベーション指標FBDを導入する。
提案手法は,タスクの分類,検出,追跡,カウントといった最先端の成果を達成し,既存のディープラーニングに基づく復号化手法に比べて,トレーニングリソースの必要量が少なくなった。
プロジェクトページ: https://suzanne-stathatos.github.io/SAVeD Code page: https://github.com/suzanne-stathatos/SAVeD
関連論文リスト
- Towards Controllable Real Image Denoising with Camera Parameters [15.41728621274958]
画像からノイズを適応的に除去する新しい制御可能なデノナイジングフレームワークを提案する。
具体的には、ノイズレベルと密接に関連するISO、シャッタースピード、Fナンバーに焦点を当てる。
選択したパラメータをベクトルに変換してデノナイジングネットワークの性能を制御・強化する。
論文 参考訳(メタデータ) (2025-07-02T10:57:33Z) - Temporal As a Plugin: Unsupervised Video Denoising with Pre-Trained Image Denoisers [30.965705043127144]
本稿では,TAP (Temporal As aTAP) という,教師なしのビデオデノベーションフレームワークを提案する。
時間的加群を組み込むことで、ノイズの多いフレームをまたがる時間的情報を活用することができ、空間的 denoising のパワーを補完することができる。
他の教師なしビデオ復号化手法と比較して,本フレームワークは,SRGBと生ビデオ復号化データセットの両方において優れた性能を示す。
論文 参考訳(メタデータ) (2024-09-17T15:05:33Z) - Unsupervised Denoising for Signal-Dependent and Row-Correlated Imaging Noise [54.0185721303932]
本稿では,行関連や信号依存の撮像ノイズを処理できる,教師なしのディープラーニングベースデノイザについて紹介する。
提案手法では,特殊設計の自己回帰デコーダを備えた変分オートエンコーダを用いる。
本手法では,事前学習した雑音モデルを必要としないため,雑音のないデータを用いてスクラッチから訓練することができる。
論文 参考訳(メタデータ) (2023-10-11T20:48:20Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - RViDeformer: Efficient Raw Video Denoising Transformer with a Larger Benchmark Dataset [15.340530514779804]
教師付き生ビデオのデノベーションのためのリアルな動きを持つ大規模なデータセットは存在しない。
ノイズクリーンな120グループからなるビデオデノケーションデータセット(ReCRVDと名づけられた)を構築した。
短距離・長距離の相関関係を探索するRViDeformer(RViDeformer)を提案する。
論文 参考訳(メタデータ) (2023-05-01T11:06:58Z) - Zero-Shot Noise2Noise: Efficient Image Denoising without any Data [26.808569077500128]
トレーニングデータやノイズ分布の知識のない単純な2層ネットワークは,低計算コストで高品質な画像のデノーミングを実現することができることを示す。
我々のアプローチはNoss2NoiseとNeighbor2Neighborによって動機付けられ、画素単位の独立ノイズを分解するのにうまく機能する。
論文 参考訳(メタデータ) (2023-03-20T16:40:37Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
十分なノイズ処理は、画像処理にとって重要な第一歩であることが多い。
ディープニューラルネットワーク(DNN)は画像のノイズ化に広く利用されている。
本研究では,タッカー低ランクテンソル近似に基づく自己教師付き画像復調フレームワークを提案する。
論文 参考訳(メタデータ) (2022-09-26T14:11:05Z) - Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
Synthesized and Real Video Denoising [137.5080784570804]
Video Denoisingは、クリーンなノイズを回復するためにビデオからノイズを取り除くことを目的としている。
既存の研究によっては、近辺のフレームから追加の空間的時間的手がかりを利用することで、光学的流れがノイズ発生の助けとなることが示されている。
本稿では,様々なノイズレベルに対してより堅牢なマルチスケール光フロー誘導型ビデオデノイング法を提案する。
論文 参考訳(メタデータ) (2022-08-25T00:09:18Z) - Deep Parametric 3D Filters for Joint Video Denoising and Illumination
Enhancement in Video Super Resolution [96.89588203312451]
本稿では,Deep Parametric 3D Filters (DP3DF) と呼ばれる新しいパラメトリック表現を提案する。
DP3DFは、ローカル情報を組み込んで、単一エンコーダ/デコーダネットワークにおいて、同時復調、照明強化、SRを効率的に実現している。
また、動的残留フレームを共有バックボーンを介してDP3DFと共同で学習し、SR品質をさらに向上させる。
論文 参考訳(メタデータ) (2022-07-05T03:57:25Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
暗黙的ニューラル表現(INR)のアーキテクチャ的帰納的バイアスを利用した代替的認知戦略を提案する。
提案手法は,低雑音シナリオや実雑音シナリオの広い範囲において,既存のゼロショット復調手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-04-05T12:46:36Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
本稿では,最先端のデノナイジング性能を実現するために,教師なしの実用的なデノナイジング手法を提案する。
本手法では, 1つのノイズ画像と1つのノイズモデルしか必要とせず, 実際の生画像に容易にアクセス可能である。
実世界のアプリケーションにおける生画像復調性能を評価するため,500シーンのシーンを含む高品質な生画像データセットSenseNoise-500を構築した。
論文 参考訳(メタデータ) (2021-11-29T07:22:53Z) - Image Denoising using Attention-Residual Convolutional Neural Networks [0.0]
本稿では,学習に基づく新たな非盲検手法であるAttention Residual Convolutional Neural Network (ARCNN)を提案し,その拡張としてFlexible Attention Residual Convolutional Neural Network (FARCNN)を提案する。
ARCNNはガウス語とポアソン語で約0.44dBと0.96dBの平均PSNR結果を達成し、FARCNNはARCNNに比べて若干パフォーマンスが悪くても非常に一貫した結果を示した。
論文 参考訳(メタデータ) (2021-01-19T16:37:57Z) - CycleISP: Real Image Restoration via Improved Data Synthesis [166.17296369600774]
本稿では,前向きと逆方向のカメラ画像パイプラインをモデル化するフレームワークを提案する。
リアルな合成データに基づいて新しい画像認識ネットワークをトレーニングすることにより、実際のカメラベンチマークデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-03-17T15:20:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。