RailGoerl24: Görlitz Rail Test Center CV Dataset 2024
- URL: http://arxiv.org/abs/2504.00204v1
- Date: Mon, 31 Mar 2025 20:18:39 GMT
- Title: RailGoerl24: Görlitz Rail Test Center CV Dataset 2024
- Authors: Rustam Tagiew, Ilkay Wunderlich, Mark Sastuba, Steffen Seitz,
- Abstract summary: RailGoerl24 is an on-board visual light Full HD camera dataset of 12205 frames recorded in a railway test center of T"UV S"UD Rail, in G"orlitz, Germany.<n>The dataset contains 33556 boxwise annotations in total for the object class 'person'
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Driverless train operation for open tracks on urban guided transport and mainline railways requires, among other things automatic detection of actual and potential obstacles, especially humans, in the danger zone of the train's path. Machine learning algorithms have proven to be powerful state-of-the-art tools for this task. However, these algorithms require large amounts of high-quality annotated data containing human beings in railway-specific environments as training data. Unfortunately, the amount of publicly available datasets is not yet sufficient and is significantly inferior to the datasets in the road domain. Therefore, this paper presents RailGoerl24, an on-board visual light Full HD camera dataset of 12205 frames recorded in a railway test center of T\"UV S\"UD Rail, in G\"orlitz, Germany. Its main purpose is to support the development of driverless train operation for guided transport. RailGoerl24 also includes a terrestrial LiDAR scan covering parts of the area used to acquire the RGB data. In addition to the raw data, the dataset contains 33556 boxwise annotations in total for the object class 'person'. The faces of recorded actors are not blurred or altered in any other way. RailGoerl24, soon available at data.fid-move.de/dataset/railgoerl24, can also be used for tasks beyond collision prediction.
Related papers
- Railway LiDAR semantic segmentation based on intelligent semi-automated data annotation [0.48212500317840945]
We present an approach for a point-wise 3D semantic segmentation based on the 2DPass network architecture using scans and images jointly.
We also present a semi-automated intelligent data annotation approach, which we use to efficiently and accurately label the required dataset recorded on a railway track in Germany.
Our contributions are threefold: We annotate rail data including camera and LiDAR data from the railway environment, transfer label the raw LiDAR point clouds using an image segmentation network, and train a state-of-the-art 3D LiDAR semantic segmentation network efficiently leveraging active learning.
arXiv Detail & Related papers (2024-10-17T09:36:19Z) - RoboSense: Large-scale Dataset and Benchmark for Egocentric Robot Perception and Navigation in Crowded and Unstructured Environments [62.5830455357187]
We setup an egocentric multi-sensor data collection platform based on 3 main types of sensors (Camera, LiDAR and Fisheye)<n>A large-scale multimodal dataset is constructed, named RoboSense, to facilitate egocentric robot perception.
arXiv Detail & Related papers (2024-08-28T03:17:40Z) - RSRD: A Road Surface Reconstruction Dataset and Benchmark for Safe and
Comfortable Autonomous Driving [67.09546127265034]
Road surface reconstruction helps to enhance the analysis and prediction of vehicle responses for motion planning and control systems.
We introduce the Road Surface Reconstruction dataset, a real-world, high-resolution, and high-precision dataset collected with a specialized platform in diverse driving conditions.
It covers common road types containing approximately 16,000 pairs of stereo images, original point clouds, and ground-truth depth/disparity maps.
arXiv Detail & Related papers (2023-10-03T17:59:32Z) - The IMPTC Dataset: An Infrastructural Multi-Person Trajectory and
Context Dataset [4.413278371057897]
Inner-city intersections are among the most critical traffic areas for injury and fatal accidents.
We use an intelligent public inner-city intersection in Germany with visual sensor technology.
The resulting dataset consists of eight hours of measurement data.
arXiv Detail & Related papers (2023-07-12T13:46:20Z) - OSDaR23: Open Sensor Data for Rail 2023 [0.0]
OSDaR23 is a multi-sensor dataset of 45 subsequences acquired in Hamburg, Germany, in September 2021.
The dataset contains 204091 polyline, polygonal, rectangle, and cuboid annotations in total for 20 different object classes.
It is the first publicly available multi-sensor annotated dataset with a variety of object classes relevant for the railway context.
arXiv Detail & Related papers (2023-05-04T17:19:47Z) - TrainSim: A Railway Simulation Framework for LiDAR and Camera Dataset
Generation [1.2165229201148093]
This paper presents a visual simulation framework able to generate realistic railway scenarios in a virtual environment.
It automatically produces inertial data and labeled datasets from emulated LiDARs and cameras.
arXiv Detail & Related papers (2023-02-28T11:00:13Z) - aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving
with Long-Range Perception [0.0]
This dataset consists of 176 scenes with synchronized and calibrated LiDAR, camera, and radar sensors covering a 360-degree field of view.
The collected data was captured in highway, urban, and suburban areas during daytime, night, and rain.
We trained unimodal and multimodal baseline models for 3D object detection.
arXiv Detail & Related papers (2022-11-17T10:19:59Z) - Large Scale Real-World Multi-Person Tracking [68.27438015329807]
This paper presents a new large scale multi-person tracking dataset -- textttPersonPath22.
It is over an order of magnitude larger than currently available high quality multi-object tracking datasets such as MOT17, HiEve, and MOT20.
arXiv Detail & Related papers (2022-11-03T23:03:13Z) - Hindsight is 20/20: Leveraging Past Traversals to Aid 3D Perception [59.2014692323323]
Small, far-away, or highly occluded objects are particularly challenging because there is limited information in the LiDAR point clouds for detecting them.
We propose a novel, end-to-end trainable Hindsight framework to extract contextual information from past data.
We show that this framework is compatible with most modern 3D detection architectures and can substantially improve their average precision on multiple autonomous driving datasets.
arXiv Detail & Related papers (2022-03-22T00:58:27Z) - One Million Scenes for Autonomous Driving: ONCE Dataset [91.94189514073354]
We introduce the ONCE dataset for 3D object detection in the autonomous driving scenario.
The data is selected from 144 driving hours, which is 20x longer than the largest 3D autonomous driving dataset available.
We reproduce and evaluate a variety of self-supervised and semi-supervised methods on the ONCE dataset.
arXiv Detail & Related papers (2021-06-21T12:28:08Z) - Detecting 32 Pedestrian Attributes for Autonomous Vehicles [103.87351701138554]
In this paper, we address the problem of jointly detecting pedestrians and recognizing 32 pedestrian attributes.
We introduce a Multi-Task Learning (MTL) model relying on a composite field framework, which achieves both goals in an efficient way.
We show competitive detection and attribute recognition results, as well as a more stable MTL training.
arXiv Detail & Related papers (2020-12-04T15:10:12Z) - Speak2Label: Using Domain Knowledge for Creating a Large Scale Driver
Gaze Zone Estimation Dataset [55.391532084304494]
Driver Gaze in the Wild dataset contains 586 recordings, captured during different times of the day including evenings.
Driver Gaze in the Wild dataset contains 338 subjects with an age range of 18-63 years.
arXiv Detail & Related papers (2020-04-13T14:47:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.