Large Language Models in Numberland: A Quick Test of Their Numerical Reasoning Abilities
- URL: http://arxiv.org/abs/2504.00226v1
- Date: Mon, 31 Mar 2025 21:06:39 GMT
- Title: Large Language Models in Numberland: A Quick Test of Their Numerical Reasoning Abilities
- Authors: Roussel Rahman,
- Abstract summary: "Numberland" is a 100-problem test to evaluate the numerical reasoning abilities of LLM-based agents.<n>We evaluated five LLM-based agents: OpenAI's o1 and o1-mini, Google Gemini, Microsoft Copilot, and Anthropic Claude.<n>We tested the top 24 solver (o1 with 73% accuracy) on 25 harder problems, and its score fell to 27%, confirming search as a bottleneck.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An essential element of human mathematical reasoning is our number sense -- an abstract understanding of numbers and their relationships -- which allows us to solve problems involving vast number spaces using limited computational resources. Mathematical reasoning of Large Language Models (LLMs) is often tested on high-level problems (such as Olympiad challenges, geometry, word problems, and puzzles), but their low-level number sense remains less explored. We introduce "Numberland," a 100-problem test to evaluate the numerical reasoning abilities of LLM-based agents. The tasks -- basic operations, advanced calculations (e.g., exponentiation, complex numbers), prime number checks, and the 24 game -- aim to test elementary skills and their integration in solving complex and uncertain problems. We evaluated five LLM-based agents: OpenAI's o1 and o1-mini, Google Gemini, Microsoft Copilot, and Anthropic Claude. They scored 74-95% on the first three tasks that allow deterministic steps to solutions. In the 24 game, which needs trial-and-error search, performance dropped to 10-73%. We tested the top 24 solver (o1 with 73% accuracy) on 25 harder problems, and its score fell to 27%, confirming search as a bottleneck. These results, along with the types of mistakes, suggest a fragile number of LLMs, which is a bit surprising given their prowess in challenging benchmarks. The limits of LLM numerical reasoning highlight the scope of simple, targeted tests to evaluate and explain LLM math skills to ensure safe use.
Related papers
- Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models [86.45058529521258]
OlymMATH is a novel Olympiad-level mathematical benchmark designed to rigorously test the complex reasoning capabilities of LLMs.
OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions.
arXiv Detail & Related papers (2025-03-27T11:20:17Z) - MathConstruct: Challenging LLM Reasoning with Constructive Proofs [0.9320657506524149]
mc is a new benchmark of 126 challenging problems sourced from various math competitions.<n>mc is suitable for Large Language Models evaluation, as solution correctness can be easily verified.
arXiv Detail & Related papers (2025-02-14T14:44:22Z) - LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMs struggle with some basic tasks that humans find trivial to handle, e.g., counting the number of character r's in the wordstrawberry.<n>We measure transferability of advanced mathematical and coding reasoning capabilities from specialized LLMs to simple counting tasks.<n>Compared with strategies such as finetuning and in-context learning, we show that engaging reasoning is the most robust and efficient way to help LLMs better perceive tasks.
arXiv Detail & Related papers (2024-10-18T04:17:16Z) - PECC: Problem Extraction and Coding Challenges [3.287942619833188]
We introduce PECC, a novel benchmark derived from Advent Of Code (AoC) challenges and Project Euler.
Unlike conventional benchmarks, PECC requires LLMs to interpret narrative-embedded problems, extract requirements, and generate code.
Results show varying model performance between narrative and neutral problems, with specific challenges in the Euler math-based subset.
arXiv Detail & Related papers (2024-04-29T15:02:14Z) - Achieving >97% on GSM8K: Deeply Understanding the Problems Makes LLMs Better Solvers for Math Word Problems [50.76385564061713]
Chain-of-Thought (CoT) prompting has enhanced the performance of Large Language Models (LLMs) across various reasoning tasks.<n>CoT usually suffers from three pitfalls: semantic misunderstanding errors, calculation errors, and step-missing errors.<n>We propose Deeply Understanding the Problems (DUP) to improve the LLMs' math problem-solving ability by addressing semantic misunderstanding errors.
arXiv Detail & Related papers (2024-04-23T12:16:05Z) - Can Language Models Solve Olympiad Programming? [40.54366634332231]
This paper introduces the USACO benchmark with 307 problems from the USA Computing Olympiad.
We construct and test a range of LM inference methods for competitive programming for the first time.
We find GPT-4 only achieves a 8.7% pass@1 accuracy with zero-shot chain-of-thought prompting.
arXiv Detail & Related papers (2024-04-16T23:27:38Z) - GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers [68.77382332826167]
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks.
One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly.
This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations.
arXiv Detail & Related papers (2024-02-29T15:26:14Z) - The Earth is Flat? Unveiling Factual Errors in Large Language Models [89.94270049334479]
Large Language Models (LLMs) like ChatGPT are in various applications due to their extensive knowledge from pre-training and fine-tuning.
Despite this, they are prone to generating factual and commonsense errors, raising concerns in critical areas like healthcare, journalism, and education.
We introduce a novel, automatic testing framework, FactChecker, aimed at uncovering factual inaccuracies in LLMs.
arXiv Detail & Related papers (2024-01-01T14:02:27Z) - PAL: Program-aided Language Models [112.94785609781503]
We present Program-Aided Language models (PaL) to understand natural language problems.
PaL offloads the solution step to a programmatic runtime such as a Python interpreter.
We set new state-of-the-art results in all 12 benchmarks.
arXiv Detail & Related papers (2022-11-18T18:56:13Z) - Lila: A Unified Benchmark for Mathematical Reasoning [59.97570380432861]
LILA is a unified mathematical reasoning benchmark consisting of 23 diverse tasks along four dimensions.
We construct our benchmark by extending 20 datasets benchmark by collecting task instructions and solutions in the form of Python programs.
We introduce BHASKARA, a general-purpose mathematical reasoning model trained on LILA.
arXiv Detail & Related papers (2022-10-31T17:41:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.