論文の概要: Opportunistic Screening for Pancreatic Cancer using Computed Tomography Imaging and Radiology Reports
- arxiv url: http://arxiv.org/abs/2504.00232v1
- Date: Mon, 31 Mar 2025 21:13:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:38.575245
- Title: Opportunistic Screening for Pancreatic Cancer using Computed Tomography Imaging and Radiology Reports
- Title(参考訳): CTと放射線検査による膵癌の検診
- Authors: David Le, Ramon Correa-Medero, Amara Tariq, Bhavik Patel, Motoyo Yano, Imon Banerjee,
- Abstract要約: 膵管腺癌(PDAC)は非常に攻撃的ながんであり,ステージIVで診断され,生存率は5%未満であった。
PDACリスクを予測するため,放射線画像とCT画像を統合した深層学習融合モデルの開発と評価を行った。
- 参考スコア(独自算出の注目度): 4.447609555191978
- License:
- Abstract: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer, with most cases diagnosed at stage IV and a five-year overall survival rate below 5%. Early detection and prognosis modeling are crucial for improving patient outcomes and guiding early intervention strategies. In this study, we developed and evaluated a deep learning fusion model that integrates radiology reports and CT imaging to predict PDAC risk. The model achieved a concordance index (C-index) of 0.6750 (95% CI: 0.6429, 0.7121) and 0.6435 (95% CI: 0.6055, 0.6789) on the internal and external dataset, respectively, for 5-year survival risk estimation. Kaplan-Meier analysis demonstrated significant separation (p<0.0001) between the low and high risk groups predicted by the fusion model. These findings highlight the potential of deep learning-based survival models in leveraging clinical and imaging data for pancreatic cancer.
- Abstract(参考訳): 膵管腺癌(PDAC)は非常に攻撃的ながんであり,ステージIVで診断され,生存率は5%未満であった。
早期発見と予後モデリングは、患者の成果の向上と早期介入戦略の導出に不可欠である。
本研究では,PDACリスクを予測するため,放射線学報告とCTイメージングを統合した深層学習融合モデルの開発と評価を行った。
このモデルは、5年間の生存リスク推定のために、内部データセットと外部データセットでそれぞれ0.6750(95% CI: 0.6429, 0.7121)と0.6435(95% CI: 0.6055, 0.6789)の一致指数(Cインデックス)を達成した。
核融合モデルにより予測された低リスク群と高リスク群の間に有意な分離(p<0.0001)が認められた。
これらの知見は, 膵癌に対する臨床および画像データの活用において, 深層学習に基づく生存モデルの可能性を示すものである。
関連論文リスト
- xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer [10.515405477496735]
生存予測のための説明可能なセルグラフ(xCG)を提案する。
肺腺癌416例に対する画像量(IMC)データの公開コホートによる検討を行った。
論文 参考訳(メタデータ) (2024-11-12T08:53:49Z) - Integrating Deep Learning with Fundus and Optical Coherence Tomography for Cardiovascular Disease Prediction [47.7045293755736]
心血管疾患(CVD)のリスクのある患者の早期発見は、効果的な予防ケア、医療負担の軽減、患者の生活の質の向上に不可欠である。
本研究は、網膜光コヒーレンス断層撮影(OCT)と眼底写真との併用による、将来の心疾患の特定の可能性を示すものである。
そこで我々は,MCVAE(Multi- Channel Variational Autoencoder)に基づく新たなバイナリ分類ネットワークを提案し,患者の眼底画像とOCT画像の潜伏埋め込みを学習し,個人を将来CVDを発症する可能性のあるものとそうでないものとの2つのグループに分類する。
論文 参考訳(メタデータ) (2024-10-18T12:37:51Z) - Predicting the risk of early-stage breast cancer recurrence using H\&E-stained tissue images [5.507561997194002]
癌組織像の病理像を解析することにより,深層学習アルゴリズムが再発リスクを予測できるかどうかを検討した。
感度は0.857, 0.746, 0.529で, 低, 中間, 高リスク, 0.816, 0.803, 0.972。
クラス活性化マップを用いてこれらの研究を通して得られたモデルをチェックすると、異なるリスクグループを予測する際に、実際に管の形成と分裂速度を検討した。
論文 参考訳(メタデータ) (2024-06-10T08:51:59Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - Prediction of recurrence free survival of head and neck cancer using
PET/CT radiomics and clinical information [0.0]
口腔咽頭HNC患者の再発性自由生存(RFS)を予測するコックス比例ハザード(CoxPH)モデルを構築した。
Computed Tomography (CT) と Positron Emission Tomography (PET) の腫瘍領域から抽出した臨床情報とマルチモーダルラジオミクスの特徴を利用する。
本研究は,放射線抽出におけるセグメンテーションの精度がPETとCTに異なる影響があることを確認した。
論文 参考訳(メタデータ) (2024-02-28T15:35:41Z) - Prediction of Breast Cancer Recurrence Risk Using a Multi-Model Approach
Integrating Whole Slide Imaging and Clinicopathologic Features [0.6679306163028237]
本研究の目的は,スライド画像全体と臨床病理学的データを分析し,関連する乳癌再発リスクを予測するマルチモデルアプローチを開発することである。
提案手法では,特徴抽出に畳み込みニューラルネットワーク,コンテキストアグリゲーションに視覚変換器を用いる。
論文 参考訳(メタデータ) (2024-01-28T23:33:56Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Dataは、PCa患者の画像データであるボリュームCDI$s$のオープンソースベンチマークデータセットである。
Cancer-Net PCa-Dataは、PCa用のCDI$s$画像データの最初の公開データセットである。
論文 参考訳(メタデータ) (2023-11-20T10:28:52Z) - Recurrence-Free Survival Prediction for Anal Squamous Cell Carcinoma
Chemoradiotherapy using Planning CT-based Radiomics Model [5.485361086613949]
非転移性肛門扁平上皮癌(SCC)患者の約30%が化学療法後の再発を経験する
我々は,放射線前処置計画CTから抽出した情報を利用して,CRT後のSCC患者における再発無生存(RFS)を予測するモデルを開発した。
論文 参考訳(メタデータ) (2023-09-05T20:22:26Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z) - Integrative Analysis for COVID-19 Patient Outcome Prediction [53.11258640541513]
我々は、集中治療室入院の必要性を予測するために、人口統計、バイタルサイン、実験室の所見から、肺不透明度の放射能と非画像の特徴を組み合わせる。
また, 地域性肺炎を含む他の肺疾患にも適用できるが, 地域性肺炎に限らない。
論文 参考訳(メタデータ) (2020-07-20T19:08:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。