Over-the-Air Edge Inference via End-to-End Metasurfaces-Integrated Artificial Neural Networks
- URL: http://arxiv.org/abs/2504.00233v1
- Date: Mon, 31 Mar 2025 21:14:09 GMT
- Title: Over-the-Air Edge Inference via End-to-End Metasurfaces-Integrated Artificial Neural Networks
- Authors: Kyriakos Stylianopoulos, Paolo Di Lorenzo, George C. Alexandropoulos,
- Abstract summary: We propose a framework of Metasurfaces-Integrated Neural Networks (MINNs) for Edge Inference (EI)<n>MINNs can significantly simplify EI requirements, achieving near-optimal performance with $50$dB lower testing signal-to-noise ratio compared to training.
- Score: 29.28415364984592
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the Edge Inference (EI) paradigm, where a Deep Neural Network (DNN) is split across the transceivers to wirelessly communicate goal-defined features in solving a computational task, the wireless medium has been commonly treated as a source of noise. In this paper, motivated by the emerging technologies of Reconfigurable Intelligent Surfaces (RISs) and Stacked Intelligent Metasurfaces (SIM) that offer programmable propagation of wireless signals, either through controllable reflections or diffractions, we optimize the RIS/SIM-enabled smart wireless environment as a means of over-the-air computing, resembling the operations of DNN layers. We propose a framework of Metasurfaces-Integrated Neural Networks (MINNs) for EI, presenting its modeling, training through a backpropagation variation for fading channels, and deployment aspects. The overall end-to-end DNN architecture is general enough to admit RIS and SIM devices, through controllable reconfiguration before each transmission or fixed configurations after training, while both channel-aware and channel-agnostic transceivers are considered. Our numerical evaluation showcases metasurfaces to be instrumental in performing image classification under link budgets that impede conventional communications or metasurface-free systems. It is demonstrated that our MINN framework can significantly simplify EI requirements, achieving near-optimal performance with $50~$dB lower testing signal-to-noise ratio compared to training, even without transceiver channel knowledge.
Related papers
- Topological Neural Networks over the Air [13.291627429657416]
Topological neural networks (TNNs) are information processing architectures that model representations from data lying over topological spaces.<n>This paper proposes a novel TNN design, operating on regular cell complexes, that performs over-the-air computation, incorporating the wireless communication model into its architecture.
arXiv Detail & Related papers (2025-02-14T10:45:36Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Multi-task Learning Approach for Modulation and Wireless Signal
Classification for 5G and Beyond: Edge Deployment via Model Compression [1.218340575383456]
Future communication networks must address the scarce spectrum to accommodate growth of heterogeneous wireless devices.
We exploit the potential of deep neural networks based multi-task learning framework to simultaneously learn modulation and signal classification tasks.
We provide a comprehensive heterogeneous wireless signals dataset for public use.
arXiv Detail & Related papers (2022-02-26T14:51:02Z) - Reconfigurable Intelligent Surface Enabled Spatial Multiplexing with
Fully Convolutional Network [40.817290717344534]
Reconfigurable surface (RIS) is an emerging technology for wireless communication systems.
We propose to apply a fully convolutional network (WSNFC) to solve this problem.
We design a set of channel features that includes both cascaded channels via the RIS and the direct channel.
arXiv Detail & Related papers (2022-01-08T14:16:00Z) - A Robust Deep Learning-Based Beamforming Design for RIS-assisted
Multiuser MISO Communications with Practical Constraints [4.727307803726522]
We consider a RIS-aided multiuser multiple-input single-output downlink communication system.
We develop a deep quantization neural network (DQNN) to simultaneously design the active and passive beamforming.
We extend the two proposed DQNN-based algorithms to the case that the discrete phase shifts and imperfect CSI are considered simultaneously.
arXiv Detail & Related papers (2021-11-12T03:53:20Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.