論文の概要: Text Chunking for Document Classification for Urban System Management using Large Language Models
- arxiv url: http://arxiv.org/abs/2504.00274v1
- Date: Mon, 31 Mar 2025 22:48:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:38.244752
- Title: Text Chunking for Document Classification for Urban System Management using Large Language Models
- Title(参考訳): 大規模言語モデルを用いた都市システム管理のための文書分類のためのテキストチャンキング
- Authors: Joshua Rodriguez, Om Sanan, Guillermo Vizarreta-Luna, Steven A. Conrad,
- Abstract要約: 都市システムは複雑なテキストドキュメンテーションを用いて管理され、要求を設定し、構築された環境性能を評価する。
本稿では,大規模言語モデル(LLM)を定性的な符号化活動に適用し,資源要求の低減に寄与する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Urban systems are managed using complex textual documentation that need coding and analysis to set requirements and evaluate built environment performance. This paper contributes to the study of applying large-language models (LLM) to qualitative coding activities to reduce resource requirements while maintaining comparable reliability to humans. Qualitative coding and assessment face challenges like resource limitations and bias, accuracy, and consistency between human evaluators. Here we report the application of LLMs to deductively code 10 case documents on the presence of 17 digital twin characteristics for the management of urban systems. We utilize two prompting methods to compare the semantic processing of LLMs with human coding efforts: whole text analysis and text chunk analysis using OpenAI's GPT-4o, GPT-4o-mini, and o1-mini models. We found similar trends of internal variability between methods and results indicate that LLMs may perform on par with human coders when initialized with specific deductive coding contexts. GPT-4o, o1-mini and GPT-4o-mini showed significant agreement with human raters when employed using a chunking method. The application of both GPT-4o and GPT-4o-mini as an additional rater with three manual raters showed statistically significant agreement across all raters, indicating that the analysis of textual documents is benefited by LLMs. Our findings reveal nuanced sub-themes of LLM application suggesting LLMs follow human memory coding processes where whole-text analysis may introduce multiple meanings. The novel contributions of this paper lie in assessing the performance of OpenAI GPT models and introduces the chunk-based prompting approach, which addresses context aggregation biases by preserving localized context.
- Abstract(参考訳): 都市システムは、要求を設定し、構築された環境性能を評価するために、コーディングと分析を必要とする複雑なテキストドキュメンテーションを使用して管理される。
本稿では,大規模言語モデル(LLM)を定性的な符号化活動に適用し,資源要求を低減し,人間に匹敵する信頼性を維持しながら研究に寄与する。
定性的なコーディングとアセスメントは、リソースの制限やバイアス、正確性、人間評価者間の一貫性といった課題に直面します。
本稿では, 都市システム管理におけるディジタル双対特性17点の存在について, 10件の事例文書の帰納的符号化へのLLMの適用について報告する。
提案手法は,OpenAI の GPT-4o, GPT-4o-mini, o1-mini モデルを用いたテキスト解析とテキストチャンク解析である。
提案手法と結果間の内部変数の類似した傾向から, LLMは, 特定の帰納的符号化コンテキストに初期化する場合に, 人間のコーダと同等に動作できることが示唆された。
GPT-4o, o1-mini, GPT-4o-miniは, チャンキング法を用いた場合, 有意な一致を示した。
GPT-4o と GPT-4o-mini を3つの手動ラッカーを併用した追加レーダとして適用した結果, テキスト文書の分析は LLM によって有用であることが示唆された。
本研究は,LLMアプリケーションにおいて,全文解析が複数の意味を持ちうる人間のメモリ符号化プロセスに従うことを示唆する暗黙のサブテーマを明らかにした。
本稿では,OpenAI GPTモデルの性能評価と,局所的なコンテキストを保存することでコンテキスト集約バイアスに対処するチャンクベースのプロンプト手法を提案する。
関連論文リスト
- Semantic Consistency Regularization with Large Language Models for Semi-supervised Sentiment Analysis [20.503153899462323]
本稿では,半教師付き感情分析のためのフレームワークを提案する。
テキストを意味的に拡張する2つのプロンプト戦略を導入する。
実験により,従来の半教師付き手法よりも優れた性能が得られた。
論文 参考訳(メタデータ) (2025-01-29T12:03:11Z) - Empowering Large Language Models in Wireless Communication: A Novel Dataset and Fine-Tuning Framework [81.29965270493238]
我々は,無線通信アプリケーションのための大規模言語モデル(LLM)の評価と微調整を目的とした,特殊なデータセットを開発した。
データセットには、真/偽と複数選択型を含む、さまざまなマルチホップ質問が含まれている。
本稿では,PVI(Pointwise V-Information)に基づく微調整手法を提案する。
論文 参考訳(メタデータ) (2025-01-16T16:19:53Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
LLM(Large Language Models)は、人間のアノテーションに対する費用対効果と効率的な代替手段を提供する。
本稿では、SILICON (Systematic Inference with LLMs for Information Classification and Notation) ワークフローを紹介する。
このワークフローは、人間のアノテーションの確立した原則と、体系的な迅速な最適化とモデル選択を統合している。
論文 参考訳(メタデータ) (2024-12-19T02:21:41Z) - Systematic Task Exploration with LLMs: A Study in Citation Text Generation [63.50597360948099]
大規模言語モデル(LLM)は、複雑な創造的自然言語生成(NLG)タスクの定義と実行において、前例のない柔軟性をもたらす。
本稿では,系統的な入力操作,参照データ,出力測定からなる3成分研究フレームワークを提案する。
我々はこのフレームワークを用いて引用テキスト生成を探索する。これは一般的なNLPタスクであり、タスク定義と評価基準に関するコンセンサスを欠いている。
論文 参考訳(メタデータ) (2024-07-04T16:41:08Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - InFoBench: Evaluating Instruction Following Ability in Large Language
Models [57.27152890085759]
Decomposed Requirements following Ratio (DRFR) は、命令に従うLarge Language Models (LLM) 能力を評価するための新しい指標である。
InFoBenchは500の多様な命令と2250の分解された質問を複数の制約カテゴリに分けたベンチマークである。
論文 参考訳(メタデータ) (2024-01-07T23:01:56Z) - Benchmarking Generation and Evaluation Capabilities of Large Language Models for Instruction Controllable Summarization [132.25202059478065]
命令制御可能なテキスト要約の大規模言語モデル(LLM)をベンチマークする。
本研究は,LLMにおいて,命令制御可能なテキスト要約が依然として困難な課題であることを示す。
論文 参考訳(メタデータ) (2023-11-15T18:25:26Z) - Which is better? Exploring Prompting Strategy For LLM-based Metrics [6.681126871165601]
本稿では,DSBA が提案する Prompting Large Language Models を Explainable Metrics 共有タスクとして記述する。
BLEUやROUGEのような従来の類似性に基づくメトリクスは、人間の評価に悪影響を与えており、オープンな生成タスクには適していない。
論文 参考訳(メタデータ) (2023-11-07T06:36:39Z) - A systematic evaluation of large language models for biomedical natural language processing: benchmarks, baselines, and recommendations [22.668383945059762]
そこで本研究では,12個のBioNLPデータセットにまたがる4つの代表言語モデル(LLM)を体系的に評価する。
評価は、ゼロショット、静的少数ショット、動的Kアネレスト、微調整の4つの設定で行われる。
これらのモデルと最先端(SOTA)アプローチを比較し、細い(ドメイン固有の)BERTモデルやBARTモデルと比較する。
論文 参考訳(メタデータ) (2023-05-10T13:40:06Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
本稿では,大規模言語モデルにチェーン・オブ・シント(CoT)を組み込んだフレームワークであるG-Evalと,NLG出力の品質評価のためのフォームフィリングパラダイムを提案する。
GPT-4 をバックボーンモデルとした G-Eval は,要約タスクにおいて,0.514 と人間とのスピアマン相関を達成し,従来手法の差を大きく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:46:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。