論文の概要: Enhancing Fundus Image-based Glaucoma Screening via Dynamic Global-Local Feature Integration
- arxiv url: http://arxiv.org/abs/2504.00431v1
- Date: Tue, 01 Apr 2025 05:28:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:08.202977
- Title: Enhancing Fundus Image-based Glaucoma Screening via Dynamic Global-Local Feature Integration
- Title(参考訳): 動的グローバルローカル特徴統合による眼底緑内障スクリーニングの強化
- Authors: Yuzhuo Zhou, Chi Liu, Sheng Shen, Siyu Le, Liwen Yu, Sihan Ouyang, Zongyuan Ge,
- Abstract要約: 特徴抽出のための最適境界を自律的に決定する自己適応型注意窓を提案する。
また,グローバルな特徴とローカルな特徴を,特徴線形読み出しによって効果的に融合するマルチヘッドアテンション機構を導入する。
緑内障の分類において,本手法が優れた精度とロバスト性を実現することを示す実験結果が得られた。
- 参考スコア(独自算出の注目度): 26.715346685730484
- License:
- Abstract: With the advancements in medical artificial intelligence (AI), fundus image classifiers are increasingly being applied to assist in ophthalmic diagnosis. While existing classification models have achieved high accuracy on specific fundus datasets, they struggle to address real-world challenges such as variations in image quality across different imaging devices, discrepancies between training and testing images across different racial groups, and the uncertain boundaries due to the characteristics of glaucomatous cases. In this study, we aim to address the above challenges posed by image variations by highlighting the importance of incorporating comprehensive fundus image information, including the optic cup (OC) and optic disc (OD) regions, and other key image patches. Specifically, we propose a self-adaptive attention window that autonomously determines optimal boundaries for enhanced feature extraction. Additionally, we introduce a multi-head attention mechanism to effectively fuse global and local features via feature linear readout, improving the model's discriminative capability. Experimental results demonstrate that our method achieves superior accuracy and robustness in glaucoma classification.
- Abstract(参考訳): 医療人工知能(AI)の進歩に伴い、眼科診断の補助として、眼底画像分類器がますます応用されている。
既存の分類モデルは、特定のデータセットに対して高い精度で達成されているが、異なる画像デバイス間での画像品質の変化、異なる人種グループ間でのイメージのトレーニングとテストの相違、楽観的なケースの特徴による不確実な境界など、現実の課題に対処するのに苦労している。
本研究では,オプティカルカップ (OC) やオプティカルディスク (OD) 領域などの包括的基盤画像情報を統合することの重要性を強調し,画像変化による課題に対処することを目的とする。
具体的には,特徴抽出のための最適境界を自律的に決定する自己適応型アテンションウィンドウを提案する。
さらに,特徴線形読み出しによるグローバルな特徴とローカルな特徴を効果的に融合するマルチヘッドアテンション機構を導入し,モデルの識別能力を向上させる。
緑内障の分類において,本手法が優れた精度とロバスト性を実現することを示す実験結果が得られた。
関連論文リスト
- EyeDiff: text-to-image diffusion model improves rare eye disease diagnosis [7.884451100342276]
EyeDiffは、自然言語のプロンプトからマルチモーダル眼科画像を生成するために設計されたテキスト・ツー・イメージモデルである。
EyeDiffは8つの大規模なデータセットでトレーニングされており、10のマルチリージョンの外部データセットに適応している。
論文 参考訳(メタデータ) (2024-11-15T07:30:53Z) - Multiscale Color Guided Attention Ensemble Classifier for Age-Related Macular Degeneration using Concurrent Fundus and Optical Coherence Tomography Images [1.159256777373941]
本稿では,移動学習に基づく注意機構を組み込んだモダリティ特化多スケールカラースペースの組込みを提案する。
MCGAEc法の性能を解析するために,Project Macula for AMDから公開されているマルチモーダルデータセットを活用し,既存のモデルと比較した。
論文 参考訳(メタデータ) (2024-09-01T13:17:45Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusionは、AI生成した画像を高品質で受け入れがたい敵の例に修正するフレームワークである。
ホワイトボックスとブラックボックスの設定の両方で有効であり、AI生成した画像を高品質な敵の偽造に変換する。
論文 参考訳(メタデータ) (2024-08-11T01:22:29Z) - FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification [40.94024666952439]
ファジィ誘導多粒性ディープニューラルネットワーク(FMDNN)を提案する。
病理学者の多粒性診断アプローチに触発され, 粗さ, 培地, 微粒度における細胞構造の特徴抽出を行った。
ファジィ誘導型クロスアテンションモジュールは、普遍的なファジィ特徴を多粒性特徴へ導く。
論文 参考訳(メタデータ) (2024-07-22T00:46:15Z) - Graph-Guided Test-Time Adaptation for Glaucoma Diagnosis using Fundus Photography [36.328434151676525]
緑内障は世界中で不可逆的な盲目の原因となっている。
眼底画像を用いた深層学習は緑内障の早期診断を大幅に改善した。
異なるデバイスや場所(ドメインシフトとして知られる)からのイメージの変化は、実世界の設定で事前トレーニングされたモデルを使用することに挑戦する。
緑内障の診断モデルを未知のテスト環境に一般化するためのグラフ誘導テスト時間適応フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T10:06:55Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - Assessing glaucoma in retinal fundus photographs using Deep Feature
Consistent Variational Autoencoders [63.391402501241195]
緑内障は症状が重くなるまで無症状のままでいるため、検出が困難である。
緑内障の早期診断は機能的,構造的,臨床的評価に基づいて行われることが多い。
ディープラーニング手法はこのジレンマを、マーカー識別段階をバイパスし、ハイレベルな情報を分析してデータを分類することで部分的に解決している。
論文 参考訳(メタデータ) (2021-10-04T16:06:49Z) - An Interpretable Multiple-Instance Approach for the Detection of
referable Diabetic Retinopathy from Fundus Images [72.94446225783697]
基礎画像における参照糖尿病網膜症検出のための機械学習システムを提案する。
画像パッチから局所情報を抽出し,アテンション機構により効率的に組み合わせることで,高い分類精度を実現することができる。
我々は,現在入手可能な網膜画像データセットに対するアプローチを評価し,最先端の性能を示す。
論文 参考訳(メタデータ) (2021-03-02T13:14:15Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
低画質の眼底画像は臨床観察における不確実性を高め、誤診のリスクを引き起こす。
本稿では,グローバルな劣化要因を抑えるために,臨床指向の基盤拡張ネットワーク(cofe-Net)を提案する。
合成画像と実画像の両方の実験により、我々のアルゴリズムは網膜の細部を失うことなく、低品質の眼底画像を効果的に補正することを示した。
論文 参考訳(メタデータ) (2020-05-12T08:01:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。