論文の概要: Multiscale Color Guided Attention Ensemble Classifier for Age-Related Macular Degeneration using Concurrent Fundus and Optical Coherence Tomography Images
- arxiv url: http://arxiv.org/abs/2409.00718v1
- Date: Sun, 1 Sep 2024 13:17:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 11:36:58.183003
- Title: Multiscale Color Guided Attention Ensemble Classifier for Age-Related Macular Degeneration using Concurrent Fundus and Optical Coherence Tomography Images
- Title(参考訳): コンカレント・ファンドスと光コヒーレンス・トモグラフィー画像を用いた加齢黄斑変性症に対するマルチスケールカラーガイド型アテンション・アンサンブル分類器
- Authors: Pragya Gupta, Subhamoy Mandal, Debashree Guha, Debjani Chakraborty,
- Abstract要約: 本稿では,移動学習に基づく注意機構を組み込んだモダリティ特化多スケールカラースペースの組込みを提案する。
MCGAEc法の性能を解析するために,Project Macula for AMDから公開されているマルチモーダルデータセットを活用し,既存のモデルと比較した。
- 参考スコア(独自算出の注目度): 1.159256777373941
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Automatic diagnosis techniques have evolved to identify age-related macular degeneration (AMD) by employing single modality Fundus images or optical coherence tomography (OCT). To classify ocular diseases, fundus and OCT images are the most crucial imaging modalities used in the clinical setting. Most deep learning-based techniques are established on a single imaging modality, which contemplates the ocular disorders to a specific extent and disregards other modality that comprises exhaustive information among distinct imaging modalities. This paper proposes a modality-specific multiscale color space embedding integrated with the attention mechanism based on transfer learning for classification (MCGAEc), which can efficiently extract the distinct modality information at various scales using the distinct color spaces. In this work, we first introduce the modality-specific multiscale color space encoder model, which includes diverse feature representations by integrating distinct characteristic color spaces on a multiscale into a unified framework. The extracted features from the prior encoder module are incorporated with the attention mechanism to extract the global features representation, which is integrated with the prior extracted features and transferred to the random forest classifier for the classification of AMD. To analyze the performance of the proposed MCGAEc method, a publicly available multi-modality dataset from Project Macula for AMD is utilized and compared with the existing models.
- Abstract(参考訳): 自動診断技術は、単一のモダリティ・ファンドス画像または光コヒーレンス・トモグラフィー(OCT)を用いて、加齢に伴う黄斑変性(AMD)を同定するために進化してきた。
眼疾患を分類するためには、眼底画像と眼底画像が臨床で使用される最も重要な画像モダリティである。
深層学習に基づくほとんどの技術は単一の画像モダリティに基づいて構築されており、眼疾患を特定の程度に考慮し、異なる画像モダリティ間で網羅的な情報を含む他のモダリティを無視している。
本稿では, 異なる色空間を用いて, 異なる色空間を効率よく抽出できる移動学習(MCGAEc)に基づいて, 注意機構と一体化した多スケール色空間を提案する。
本稿では,まず,マルチスケールに特徴的な色空間を統一したフレームワークに統合することにより,多彩な特徴表現を含む,モダリティ固有の色空間エンコーダモデルを紹介する。
先行エンコーダモジュールから抽出した特徴をアテンション機構に組み込んでグローバル特徴表現を抽出し、その特徴と統合し、ランダム森林分類器に転送してAMDの分類を行う。
MCGAEc法の性能を解析するために,Project Macula for AMDから公開されているマルチモーダルデータセットを活用し,既存のモデルと比較した。
関連論文リスト
- ShapeMamba-EM: Fine-Tuning Foundation Model with Local Shape Descriptors and Mamba Blocks for 3D EM Image Segmentation [49.42525661521625]
本稿では3次元EMセグメンテーションのための特殊微調整法であるShapeMamba-EMを提案する。
5つのセグメンテーションタスクと10のデータセットをカバーする、幅広いEMイメージでテストされている。
論文 参考訳(メタデータ) (2024-08-26T08:59:22Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Contrastive Learning-Based Spectral Knowledge Distillation for
Multi-Modality and Missing Modality Scenarios in Semantic Segmentation [2.491548070992611]
CSK-Netと呼ばれる新しいマルチモーダル融合手法を提案する。
対照的な学習に基づくスペクトル知識蒸留技術を用いる。
実験の結果、CSK-Netはマルチモーダルタスクや欠落したモダリティにおいて最先端のモデルを上回ることがわかった。
論文 参考訳(メタデータ) (2023-12-04T10:27:09Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
拡散確率モデル(DDPM)を利用したVerseDiff-UNetというエンドツーエンドフレームワークを提案する。
我々のアプローチは拡散モデルを標準のU字型アーキテクチャに統合する。
本手法はX線画像から得られた脊椎画像の1つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2023-09-12T03:05:00Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
我々は,グループ洞察の分布を学習することで,複数の可算出力を生成する単一拡散モデルに基づくアプローチを提案する。
提案モデルでは,拡散の固有のサンプリングプロセスを利用してセグメンテーションマスクの分布を生成する。
その結果,提案手法は既存の最先端曖昧なセグメンテーションネットワークよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-04-10T17:58:22Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Segmentation-guided Domain Adaptation and Data Harmonization of
Multi-device Retinal Optical Coherence Tomography using Cycle-Consistent
Generative Adversarial Networks [2.968191199408213]
本稿では,複数のデバイスからの画像を単一画像領域に適応させるセグメント化誘導型領域適応手法を提案する。
来るべき新しいデータセットに対する手動ラベリングの時間消費と、既存のネットワークの再トレーニングを回避する。
論文 参考訳(メタデータ) (2022-08-31T05:06:00Z) - A Keypoint Detection and Description Network Based on the Vessel
Structure for Multi-Modal Retinal Image Registration [0.0]
異なるモダリティや取得時間を持つ複数の画像は、網膜疾患の診断のためにしばしば分析される。
本手法は、畳み込みニューラルネットワークを用いて、多モード網膜画像の血管構造の特徴を抽出する。
論文 参考訳(メタデータ) (2022-01-06T20:43:35Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
我々は,完全サンプル化された補助モダリティから補完表現を発見できる,MANetという新しいマルチモーダル・アグリゲーション・ネットワークを提案する。
我々のMANetでは,完全サンプリングされた補助的およびアンアンサンプされた目標モダリティの表現は,特定のネットワークを介して独立に学習される。
私たちのMANetは、$k$-spaceドメインの周波数信号を同時に回復できるハイブリッドドメイン学習フレームワークに従います。
論文 参考訳(メタデータ) (2021-10-15T13:16:59Z) - Contextual Information Enhanced Convolutional Neural Networks for
Retinal Vessel Segmentation in Color Fundus Images [0.0]
自動網膜血管セグメンテーションシステムは、臨床診断及び眼科研究を効果的に促進することができる。
ディープラーニングベースの手法が提案され、いくつかのカスタマイズされたモジュールが有名なエンコーダデコーダアーキテクチャU-netに統合されている。
その結果,提案手法は先行技術よりも優れ,感性/リコール,F1スコア,MCCの最先端性能を実現している。
論文 参考訳(メタデータ) (2021-03-25T06:10:47Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。