Hierarchical Attention Networks for Lossless Point Cloud Attribute Compression
- URL: http://arxiv.org/abs/2504.00481v1
- Date: Tue, 01 Apr 2025 07:14:10 GMT
- Title: Hierarchical Attention Networks for Lossless Point Cloud Attribute Compression
- Authors: Yueru Chen, Wei Zhang, Dingquan Li, Jing Wang, Ge Li,
- Abstract summary: We propose a deep hierarchical attention context model for attribute compression of point clouds.<n>A simple and effective Level of Detail (LoD) structure is introduced to yield a coarse-to-fine representation.<n>Points within the same refinement level are encoded in parallel, sharing a common context point group.
- Score: 22.234604407822673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a deep hierarchical attention context model for lossless attribute compression of point clouds, leveraging a multi-resolution spatial structure and residual learning. A simple and effective Level of Detail (LoD) structure is introduced to yield a coarse-to-fine representation. To enhance efficiency, points within the same refinement level are encoded in parallel, sharing a common context point group. By hierarchically aggregating information from neighboring points, our attention model learns contextual dependencies across varying scales and densities, enabling comprehensive feature extraction. We also adopt normalization for position coordinates and attributes to achieve scale-invariant compression. Additionally, we segment the point cloud into multiple slices to facilitate parallel processing, further optimizing time complexity. Experimental results demonstrate that the proposed method offers better coding performance than the latest G-PCC for color and reflectance attributes while maintaining more efficient encoding and decoding runtimes.
Related papers
- PCE-GAN: A Generative Adversarial Network for Point Cloud Attribute Quality Enhancement based on Optimal Transport [56.56430888985025]
We propose a generative adversarial network for point cloud quality enhancement (PCE-GAN)<n>The generator consists of a local feature extraction (LFE) unit, a global spatial correlation (GSC) unit and a feature squeeze unit.<n>The discriminator computes the deviation between the probability distributions of the enhanced point cloud and the original point cloud, guiding the generator to achieve high quality reconstruction.
arXiv Detail & Related papers (2025-02-26T07:34:33Z) - Decoupled Sparse Priors Guided Diffusion Compression Model for Point Clouds [26.32608616696905]
Lossy compression methods rely on an autoencoder to transform a point cloud into latent points for storage.
We propose a sparse priors guided method that achieves high reconstruction quality, especially at high compression ratios.
arXiv Detail & Related papers (2024-11-21T05:41:35Z) - Att2CPC: Attention-Guided Lossy Attribute Compression of Point Clouds [18.244200436103156]
We propose an efficient attention-based method for lossy compression of point cloud attributes leveraging on an autoencoder architecture.
Experiments show that our method achieves an average improvement of 1.15 dB and 2.13 dB in BD-PSNR of Y channel and YUV channel, respectively.
arXiv Detail & Related papers (2024-10-23T12:32:21Z) - Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
We use the KNN method to determine the neighborhoods of raw surface points.
A conditional probability model is adaptive to local geometry, leading to significant rate reduction.
We incorporate an implicit neural representation into the refinement layer, allowing the decoder to sample points on the underlying surface at arbitrary densities.
arXiv Detail & Related papers (2024-08-06T05:24:06Z) - Lightweight super resolution network for point cloud geometry
compression [34.42460388539782]
We present an approach for compressing point cloud geometry by leveraging a lightweight super-resolution network.
The proposed method involves decomposing a point cloud into a base point cloud and the patterns for reconstructing the original point cloud.
Experiments on MPEG Cat1 (Solid) and Cat2 datasets demonstrate the remarkable compression performance achieved by our method.
arXiv Detail & Related papers (2023-11-02T03:34:51Z) - Composite Convolution: a Flexible Operator for Deep Learning on 3D Point Clouds [4.104847990024176]
We introduce the composite layer, a flexible and general alternative to the existing convolutional operators that process 3D point clouds.
Compared to mainstream point-convolutional layers such as ConvPoint and KPConv, our composite layer guarantees greater flexibility in network design and provides an additional form of regularization.
Our experiments on synthetic and real-world datasets show that, in both classification, segmentation, and anomaly detection, our CompositeNets outperform ConvPoint, which uses the same sequential architecture, and achieve similar results as KPConv, which has a deeper, residual architecture.
arXiv Detail & Related papers (2022-09-23T18:32:18Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - Density-preserving Deep Point Cloud Compression [72.0703956923403]
We propose a novel deep point cloud compression method that preserves local density information.
Our method works in an auto-encoder fashion: the encoder downsamples the points and learns point-wise features, while the decoder upsamples the points using these features.
arXiv Detail & Related papers (2022-04-27T03:42:15Z) - Hierarchical Point Cloud Encoding and Decoding with Lightweight
Self-Attention based Model [22.338247335791095]
SA-CNN is a self-attention based encoding and decoding architecture for representation learning of point cloud data.
We demonstrate that SA-CNN is capable of a wide range of applications, namely classification, part segmentation, reconstruction, shape retrieval, and unsupervised classification.
arXiv Detail & Related papers (2022-02-13T21:10:06Z) - Dynamic Convolution for 3D Point Cloud Instance Segmentation [146.7971476424351]
We propose an approach to instance segmentation from 3D point clouds based on dynamic convolution.
We gather homogeneous points that have identical semantic categories and close votes for the geometric centroids.
The proposed approach is proposal-free, and instead exploits a convolution process that adapts to the spatial and semantic characteristics of each instance.
arXiv Detail & Related papers (2021-07-18T09:05:16Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic
Convolution [136.7261709896713]
We propose a data-driven approach that generates the appropriate convolution kernels to apply in response to the nature of the instances.
The proposed method achieves promising results on both ScanetNetV2 and S3DIS.
It also improves inference speed by more than 25% over the current state-of-the-art.
arXiv Detail & Related papers (2020-11-26T14:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.