論文の概要: Automated detection of atomicity violations in large-scale systems
- arxiv url: http://arxiv.org/abs/2504.00521v1
- Date: Tue, 01 Apr 2025 08:13:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:25:35.373119
- Title: Automated detection of atomicity violations in large-scale systems
- Title(参考訳): 大規模システムにおける原子性欠陥の自動検出
- Authors: Hang He, Yixing Luo, Chengcheng Wan, Ting Su, Haiying Sun, Geguang Pu,
- Abstract要約: 我々は,大規模言語モデル (LLM) エージェントと静的解析を統合し,実世界のプログラムにおける原子性違反を検出するフレームワークであるCloverを提案する。
Cloverは92.3%/86.6%の精度/リコールを達成した。
- 参考スコア(独自算出の注目度): 5.652514080341844
- License:
- Abstract: Atomicity violations in interrupt-driven programs pose a significant threat to software safety in critical systems. These violations occur when the execution sequence of operations on shared resources is disrupted by asynchronous interrupts. Detecting atomicity violations is challenging due to the vast program state space, application-level code dependencies, and complex domain-specific knowledge. We propose Clover, a hybrid framework that integrates static analysis with large language model (LLM) agents to detect atomicity violations in real-world programs. Clover first performs static analysis to extract critical code snippets and operation information. It then initiates a multi-agent process, where the expert agent leverages domain-specific knowledge to detect atomicity violations, which are subsequently validated by the judge agent. Evaluations on RaceBench 2.1, SV-COMP, and RWIP demonstrate that Clover achieves a precision/recall of 92.3%/86.6%, outperforming existing approaches by 27.4-118.2% on F1-score.
- Abstract(参考訳): 割り込み駆動プログラムにおける原子性侵害は、クリティカルシステムにおけるソフトウェアの安全性に重大な脅威をもたらす。
これらの違反は、共有リソース上の操作の実行シーケンスが非同期割り込みによって中断されたときに発生する。
膨大なプログラム状態空間、アプリケーションレベルのコード依存性、複雑なドメイン固有の知識のために、原子性違反を検出することは難しい。
我々は,大規模言語モデル (LLM) エージェントと静的解析を統合し,実世界のプログラムにおける原子性違反を検出するハイブリッドフレームワークであるCloverを提案する。
Cloverはまず静的解析を行い、重要なコードスニペットと操作情報を抽出する。
次に、専門家エージェントがドメイン固有の知識を活用して原子性違反を検出するマルチエージェントプロセスを開始し、その後、審査エージェントによって検証される。
RaceBench 2.1、SV-COMP、RWIPの評価は、クローバーが92.3%/86.6%の精度/リコールを達成することを示した。
関連論文リスト
- Fine-Grained 1-Day Vulnerability Detection in Binaries via Patch Code Localization [12.73365645156957]
バイナリの1日間の脆弱性は、ソフトウェアセキュリティに対する大きな脅威になっている。
パッチの有無テストは 脆弱性を検出する効果的な方法の1つです
パッチコードとそのコンテキストから安定な値を利用するPLocatorという新しい手法を提案する。
論文 参考訳(メタデータ) (2025-01-29T04:35:37Z) - SoftPatch+: Fully Unsupervised Anomaly Classification and Segmentation [84.07909405887696]
本論文は、完全教師なし産業異常検出(すなわち、ノイズデータ付き教師なしAD)を初めて検討したものである。
メモリベースの非教師なしAD手法であるSoftPatchとSoftPatch+を提案する。
既存の手法と比較して、SoftPatchは通常のデータの強力なモデリング能力を維持し、コアセットにおける過信問題を軽減する。
様々なノイズシナリオで実施された総合的な実験により、SoftPatchとSoftPatch+はMVTecAD、ViSA、BTADのベンチマークで最先端のADメソッドよりも優れていた。
論文 参考訳(メタデータ) (2024-12-30T11:16:49Z) - Code-as-Monitor: Constraint-aware Visual Programming for Reactive and Proactive Robotic Failure Detection [56.66677293607114]
オープンセットのリアクティブかつアクティブな障害検出のためのCode-as-Monitor(CaM)を提案する。
モニタリングの精度と効率を高めるために,制約関連エンティティを抽象化する制約要素を導入する。
実験により、CaMは28.7%高い成功率を達成し、厳しい乱れの下で実行時間を31.8%短縮することが示された。
論文 参考訳(メタデータ) (2024-12-05T18:58:27Z) - REDO: Execution-Free Runtime Error Detection for COding Agents [3.9903610503301072]
Execution-free Error Detection for Coding Agents (REDO)は、実行時のエラーと静的解析ツールを統合する方法である。
我々はREDOが11.0%の精度と9.1%の重み付きF1スコアを達成し、最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-10-10T18:06:29Z) - The Impact of SBOM Generators on Vulnerability Assessment in Python: A Comparison and a Novel Approach [56.4040698609393]
Software Bill of Materials (SBOM) は、ソフトウェア構成における透明性と妥当性を高めるツールとして推奨されている。
現在のSBOM生成ツールは、コンポーネントや依存関係を識別する際の不正確さに悩まされることが多い。
提案するPIP-sbomは,その欠点に対処する新しいピップインスパイアされたソリューションである。
論文 参考訳(メタデータ) (2024-09-10T10:12:37Z) - VulEval: Towards Repository-Level Evaluation of Software Vulnerability Detection [14.312197590230994]
textbfVulEvalという名前のリポジトリレベルの評価システムは、プロセス間およびプロセス内脆弱性の検出性能を同時に評価することを目的としている。
VulEvalは大規模データセットで構成され、合計で4,196のCVEエントリ、232,239の関数、および対応する4,699のリポジトリレベルのソースコードがC/C++プログラミング言語に含まれる。
論文 参考訳(メタデータ) (2024-04-24T02:16:11Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
既存の脆弱性検出ツールは、複雑なコントラクトにおける脆弱性の効率性や検出成功率の面では不十分である。
SliSEは、複雑なコントラクトに対するReentrancy脆弱性を検出する堅牢で効率的な方法を提供する。
論文 参考訳(メタデータ) (2024-03-17T16:08:30Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - Malicious Agent Detection for Robust Multi-Agent Collaborative Perception [52.261231738242266]
多エージェント協調(MAC)知覚は、単エージェント認識よりも敵攻撃に対して脆弱である。
MAC知覚に特異的な反応防御であるMADE(Malicious Agent Detection)を提案する。
我々は、ベンチマーク3DデータセットV2X-simとリアルタイムデータセットDAIR-V2Xで包括的な評価を行う。
論文 参考訳(メタデータ) (2023-10-18T11:36:42Z) - IsoEx: an explainable unsupervised approach to process event logs cyber
investigation [0.0]
本稿では,異常および潜在的に問題のあるコマンド行を検出するための新しい手法であるIsoExを提案する。
異常を検出するために、IsoExは高度に敏感かつ軽量な教師なしの異常検出技術を利用する。
論文 参考訳(メタデータ) (2023-06-07T14:22:41Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
本稿では,システムの物理的特性に反する逆スプーフ信号を生成するための新しい枠組みを提案する。
トップセキュリティカンファレンスで公表された4つの異常検知器を分析した。
論文 参考訳(メタデータ) (2020-12-07T11:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。