Introducing Repository Stability
- URL: http://arxiv.org/abs/2504.00542v1
- Date: Tue, 01 Apr 2025 08:47:29 GMT
- Title: Introducing Repository Stability
- Authors: Giuseppe Destefanis, Silvia Bartolucci, Daniel Graziotin, Rumyana Neykova, Marco Ortu,
- Abstract summary: We introduce a framework to understand repository stability, which is a repository activity capacity to return to equilibrium following disturbances.<n>The framework quantifies stability through four indicators: commit patterns, issue resolution, pull request processing, and community engagement.<n>The framework bridges control theory concepts with modern collaborative software development, providing a foundation for future empirical validation.
- Score: 5.211412628335315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drawing from engineering systems and control theory, we introduce a framework to understand repository stability, which is a repository activity capacity to return to equilibrium following disturbances - such as a sudden influx of bug reports, key contributor departures, or a spike in feature requests. The framework quantifies stability through four indicators: commit patterns, issue resolution, pull request processing, and community engagement, measuring development consistency, problem-solving efficiency, integration effectiveness, and sustainable participation, respectively. These indicators are synthesized into a Composite Stability Index (CSI) that provides a normalized measure of repository health proxied by its stability. Finally, the framework introduces several important theoretical properties that validate its usefulness as a measure of repository health and stability. At a conceptual phase and open to debate, our work establishes mathematical criteria for evaluating repository stability and proposes new ways to understand sustainable development practices. The framework bridges control theory concepts with modern collaborative software development, providing a foundation for future empirical validation.
Related papers
- On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [314.7991906491166]
Generative Foundation Models (GenFMs) have emerged as transformative tools.<n>Their widespread adoption raises critical concerns regarding trustworthiness across dimensions.<n>This paper presents a comprehensive framework to address these challenges through three key contributions.
arXiv Detail & Related papers (2025-02-20T06:20:36Z) - Using Sustainability Impact Scores for Software Architecture Evaluation [5.33605239628904]
We present an improved version of the Sustainability Impact Score (SIS)<n>The SIS facilitates the identification and quantification of trade-offs in terms of their sustainability impact.<n>Our study reveals that technical quality concerns have significant, often unrecognized impacts across sustainability dimensions.
arXiv Detail & Related papers (2025-01-28T15:00:45Z) - Modelling and Classification of Fairness Patterns for Designing Sustainable Information Systems [0.2867517731896504]
This paper explores the concept of fairness in sociotechnical system design.<n>It is based on a reference sustainability meta-model capturing the concepts of value, assumption, regulation, metric and task.
arXiv Detail & Related papers (2024-11-26T21:23:56Z) - Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Stability Evaluation via Distributional Perturbation Analysis [28.379994938809133]
We propose a stability evaluation criterion based on distributional perturbations.
Our stability evaluation criterion can address both emphdata corruptions and emphsub-population shifts.
Empirically, we validate the practical utility of our stability evaluation criterion across a host of real-world applications.
arXiv Detail & Related papers (2024-05-06T06:47:14Z) - Stability-Certified Learning of Control Systems with Quadratic
Nonlinearities [9.599029891108229]
This work primarily focuses on an operator inference methodology aimed at constructing low-dimensional dynamical models.
Our main objective is to develop a method that facilitates the inference of quadratic control dynamical systems with inherent stability guarantees.
arXiv Detail & Related papers (2024-03-01T16:26:47Z) - Continual evaluation for lifelong learning: Identifying the stability
gap [35.99653845083381]
We show that a set of common state-of-the-art methods still suffers from substantial forgetting upon starting to learn new tasks.
We refer to this intriguing but potentially problematic phenomenon as the stability gap.
We establish a framework for continual evaluation that uses per-iteration evaluation and we define a new set of metrics to quantify worst-case performance.
arXiv Detail & Related papers (2022-05-26T15:56:08Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - Stable and consistent density-based clustering via multiparameter
persistence [77.34726150561087]
We consider the degree-Rips construction from topological data analysis.
We analyze its stability to perturbations of the input data using the correspondence-interleaving distance.
We integrate these methods into a pipeline for density-based clustering, which we call Persistable.
arXiv Detail & Related papers (2020-05-18T19:45:04Z) - GenDICE: Generalized Offline Estimation of Stationary Values [108.17309783125398]
We show that effective estimation can still be achieved in important applications.
Our approach is based on estimating a ratio that corrects for the discrepancy between the stationary and empirical distributions.
The resulting algorithm, GenDICE, is straightforward and effective.
arXiv Detail & Related papers (2020-02-21T00:27:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.