Stability-Certified Learning of Control Systems with Quadratic
Nonlinearities
- URL: http://arxiv.org/abs/2403.00646v1
- Date: Fri, 1 Mar 2024 16:26:47 GMT
- Title: Stability-Certified Learning of Control Systems with Quadratic
Nonlinearities
- Authors: Igor Pontes Duff and Pawan Goyal and Peter Benner
- Abstract summary: This work primarily focuses on an operator inference methodology aimed at constructing low-dimensional dynamical models.
Our main objective is to develop a method that facilitates the inference of quadratic control dynamical systems with inherent stability guarantees.
- Score: 9.599029891108229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work primarily focuses on an operator inference methodology aimed at
constructing low-dimensional dynamical models based on a priori hypotheses
about their structure, often informed by established physics or expert
insights. Stability is a fundamental attribute of dynamical systems, yet it is
not always assured in models derived through inference. Our main objective is
to develop a method that facilitates the inference of quadratic control
dynamical systems with inherent stability guarantees. To this aim, we
investigate the stability characteristics of control systems with
energy-preserving nonlinearities, thereby identifying conditions under which
such systems are bounded-input bounded-state stable. These insights are
subsequently applied to the learning process, yielding inferred models that are
inherently stable by design. The efficacy of our proposed framework is
demonstrated through a couple of numerical examples.
Related papers
- Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
We tackle the performance-boosting problem with closed-loop stability guarantees.
Our methods enable learning over arbitrarily deep neural network classes of performance-boosting controllers for stable nonlinear systems.
arXiv Detail & Related papers (2024-05-01T21:11:29Z) - Data-Driven Control with Inherent Lyapunov Stability [3.695480271934742]
We propose Control with Inherent Lyapunov Stability (CoILS) as a method for jointly learning parametric representations of a nonlinear dynamics model and a stabilizing controller from data.
In addition to the stabilizability of the learned dynamics guaranteed by our novel construction, we show that the learned controller stabilizes the true dynamics under certain assumptions on the fidelity of the learned dynamics.
arXiv Detail & Related papers (2023-03-06T14:21:42Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
We propose a model-based reinforcement learning framework with formal stability guarantees.
The proposed method learns the system dynamics up to a confidence interval using feature representation.
We show that KCRL is guaranteed to learn a stabilizing policy in a finite number of interactions with the underlying unknown system.
arXiv Detail & Related papers (2022-06-03T17:27:04Z) - Learning Stabilizable Deep Dynamics Models [1.75320459412718]
We propose a new method for learning the dynamics of input-affine control systems.
An important feature is that a stabilizing controller and control Lyapunov function of the learned model are obtained as well.
The proposed method can also be applied to solving Hamilton-Jacobi inequalities.
arXiv Detail & Related papers (2022-03-18T03:09:24Z) - Bayesian Algorithms Learn to Stabilize Unknown Continuous-Time Systems [0.0]
Linear dynamical systems are canonical models for learning-based control of plants with uncertain dynamics.
A reliable stabilization procedure for this purpose that can effectively learn from unstable data to stabilize the system in a finite time is not currently available.
In this work, we propose a novel learning algorithm that stabilizes unknown continuous-time linear systems.
arXiv Detail & Related papers (2021-12-30T15:31:35Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Almost Surely Stable Deep Dynamics [4.199844472131922]
We introduce a method for learning provably stable deep neural network based dynamic models from observed data.
Our method works by embedding a Lyapunov neural network into the dynamic model, thereby inherently satisfying the stability criterion.
arXiv Detail & Related papers (2021-03-26T20:37:08Z) - The Impact of Data on the Stability of Learning-Based Control- Extended
Version [63.97366815968177]
We propose a Lyapunov-based measure for quantifying the impact of data on the certifiable control performance.
By modeling unknown system dynamics through Gaussian processes, we can determine the interrelation between model uncertainty and satisfaction of stability conditions.
arXiv Detail & Related papers (2020-11-20T19:10:01Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
We study the continuous-time dynamics induced by GAN training.
From this perspective, we hypothesise that instabilities in training GANs arise from the integration error.
We experimentally verify that well-known ODE solvers (such as Runge-Kutta) can stabilise training.
arXiv Detail & Related papers (2020-10-28T15:23:49Z) - Efficient Empowerment Estimation for Unsupervised Stabilization [75.32013242448151]
empowerment principle enables unsupervised stabilization of dynamical systems at upright positions.
We propose an alternative solution based on a trainable representation of a dynamical system as a Gaussian channel.
We show that our method has a lower sample complexity, is more stable in training, possesses the essential properties of the empowerment function, and allows estimation of empowerment from images.
arXiv Detail & Related papers (2020-07-14T21:10:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.