Quantum Otto engine with quantum correlations
- URL: http://arxiv.org/abs/2211.12672v2
- Date: Fri, 20 Oct 2023 02:46:00 GMT
- Title: Quantum Otto engine with quantum correlations
- Authors: Yang Xiao, Dehua Liu, Jizhou He, Yongli Ma, Zhaoqi Wu, and Jianhui
Wang
- Abstract summary: We investigate a photo-Otto engine that is working with a single-mode radiation field inside an optical cavity and driven by a hot and a cold reservoir.
We show that quantum discord boosts the performance and efficiency of the quantum engine, and even may change the operation mode.
- Score: 3.740507726022551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically prose and investigate a photo-Otto engine that is working
with a single-mode radiation field inside an optical cavity and alternatively
driven by a hot and a cold reservoir, where the hot reservoir is realized by
sending one of a pair of correlated two-level atoms to pass through the optical
cavity, and the cold one is made of a collection of noninteracting boson modes.
In terms of the quantum discord of the pair of atoms, we derive the analytical
expressions for the performance parameters (power and efficiency) and stability
measure (coefficient of variation for power). We show that quantum discord
boosts the performance and efficiency of the quantum engine, and even may
change the operation mode. We also demonstrate that quantum discord improves
the stability of machine by decreasing the coefficient of variation for power
which satisfies the generalized thermodynamic uncertainty relation. Finally, we
find that these results can be transferred to another photo-Otto engine model,
where the optical cavity is alternatively coupled to a hot thermal bosonic bath
and to a beam of pairs of the two correlated atoms that play the role of a cold
reservoir.
Related papers
- Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Universal quantum Otto heat machine based on the Dicke model [0.0]
We study a quantum Otto thermal machine where the working substance is composed of N identical qubits coupled to a single mode of a bosonic field.
We show that it is possible to build a universal quantum heat machine (UQHM) that can function as an engine, refrigerator, heater or accelerator.
arXiv Detail & Related papers (2023-08-13T02:27:17Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Quantum field heat engine powered by phonon-photon interactions [58.720142291102135]
We present a quantum heat engine based on a cavity with two oscillating mirrors.
The engine performs an Otto cycle during which the walls and a field mode interact via a nonlinear Hamiltonian.
arXiv Detail & Related papers (2023-05-10T20:27:15Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum signatures in quadratic optomechanical heat engine with an atom
in a tapered trap [0.0]
We investigate how quantum signatures can emerge in a single atom heat engine consisting of an atom confined in a tapered trap.
We model such a system using a quadratic optomechanical model and identify an effective Otto cycle in the system's dynamics.
arXiv Detail & Related papers (2021-11-24T21:24:21Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Quantum jump approach to microscopic heat engines [0.0]
Modern technologies could soon make it possible to investigate the operation cycles of quantum heat engines by counting the photons that are emitted and absorbed by their working systems.
We show that such experiments would give access to a set of observables that determine the trade-off between power and efficiency in finite-time engine cycles.
arXiv Detail & Related papers (2020-05-25T17:00:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.