論文の概要: NeuraLUT-Assemble: Hardware-aware Assembling of Sub-Neural Networks for Efficient LUT Inference
- arxiv url: http://arxiv.org/abs/2504.00592v1
- Date: Tue, 01 Apr 2025 09:52:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:20:23.696132
- Title: NeuraLUT-Assemble: Hardware-aware Assembling of Sub-Neural Networks for Efficient LUT Inference
- Title(参考訳): NeuraLUT-Assemble:効率的なLUT推論のためのサブニューラルネットワークのハードウェア・アウェア・アセンブル
- Authors: Marta Andronic, George A. Constantinides,
- Abstract要約: ルックアップテーブル(LUT)を活用したNN(Efficient Neural Network)は、新興AIアプリケーションにおいて大きな可能性を示している。
既存のLUTベースの設計では、入力幅のLUTリソースの指数的スケーリングによって制限されたニューロンが要求するファンインが大きいため、精度が低下する。
我々は、これらの制限に対処する新しいフレームワークであるNeuraLUT-Assembleを紹介する。
- 参考スコア(独自算出の注目度): 2.7086888205833968
- License:
- Abstract: Efficient neural networks (NNs) leveraging lookup tables (LUTs) have demonstrated significant potential for emerging AI applications, particularly when deployed on field-programmable gate arrays (FPGAs) for edge computing. These architectures promise ultra-low latency and reduced resource utilization, broadening neural network adoption in fields such as particle physics. However, existing LUT-based designs suffer from accuracy degradation due to the large fan-in required by neurons being limited by the exponential scaling of LUT resources with input width. In practice, in prior work this tension has resulted in the reliance on extremely sparse models. We present NeuraLUT-Assemble, a novel framework that addresses these limitations by combining mixed-precision techniques with the assembly of larger neurons from smaller units, thereby increasing connectivity while keeping the number of inputs of any given LUT manageable. Additionally, we introduce skip-connections across entire LUT structures to improve gradient flow. NeuraLUT-Assemble closes the accuracy gap between LUT-based methods and (fully-connected) MLP-based models, achieving competitive accuracy on tasks such as network intrusion detection, digit classification, and jet classification, demonstrating up to $8.42\times$ reduction in the area-delay product compared to the state-of-the-art at the time of the publication.
- Abstract(参考訳): ルックアップテーブル(LUT)を活用したニューラルネットワーク(NN)は、特にエッジコンピューティングのためのフィールドプログラマブルゲートアレイ(FPGA)にデプロイされた場合、新興AIアプリケーションにとって大きな可能性を示している。
これらのアーキテクチャは、超低レイテンシとリソース使用量の削減を約束し、粒子物理学などの分野におけるニューラルネットワークの採用を拡大する。
しかし、既存のLUTベースの設計では、入力幅のLUTリソースの指数的スケーリングによって制限されたニューロンが要求するファンインが大きいため、精度が低下する。
実際には、以前の作業では、この緊張は極めてスパースなモデルに依存している。
我々は,これらの制約に対処する新しいフレームワークであるNeuraLUT-Assembleを提案する。
さらに、勾配流を改善するために、LUT構造全体のスキップ接続を導入する。
NeuraLUT-Assemble は LUT ベースの手法と(完全に接続された) MLP ベースのモデルの間の精度のギャップを埋め、ネットワーク侵入の検出、桁分類、ジェット分類といったタスクの競争精度を達成し、出版時点での最先端技術と比較して、エリア遅延の製品を最大8.42\times$で削減することを示した。
関連論文リスト
- PolyLUT-Add: FPGA-based LUT Inference with Wide Inputs [1.730979251211628]
この研究はPolyLUT-Addを導入し、これは精度を向上させるために$A$ PolyLUTサブニューロンを組み合わせることによってニューロンの接続性を高める技術である。
我々は,MNIST,Jet Substructure Classification,Network Intrusion Detectionベンチマークに対する実装評価を行い,同様の精度でPolyLUT-AddがLUTの2.0-13.9times$と1.2-1.6times$の遅延低減を実現していることを確認した。
論文 参考訳(メタデータ) (2024-06-07T13:00:57Z) - NeuraLUT: Hiding Neural Network Density in Boolean Synthesizable Functions [2.7086888205833968]
Field-Programmable Gate Array (FPGA)アクセラレータは、レイテンシとリソースクリティカルなDeep Neural Network (DNN)推論タスクの処理に成功している。
本稿では、ニューロンの境界を緩和し、サブネットワーク全体を単一のLUTにマッピングすることを提案する。
提案手法は,既知の遅延クリティカルタスク,ジェットサブストラクチャタグ,古典的コンピュータビジョンタスク,MNISTを用いた桁分類で検証する。
論文 参考訳(メタデータ) (2024-02-29T16:10:21Z) - Quantization-aware Neural Architectural Search for Intrusion Detection [5.010685611319813]
本稿では、最先端NNの1000倍の規模を持つ量子化ニューラルネットワーク(NN)モデルを自動的に訓練し、進化させる設計手法を提案する。
FPGAにデプロイする際にこのネットワークが利用するLUTの数は2.3倍から8.5倍と小さく、性能は以前の作業に匹敵する。
論文 参考訳(メタデータ) (2023-11-07T18:35:29Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
制約のあるリソースに大規模ディープニューラルネットワークをデプロイするための新しいアプローチを導入する。
この手法は推論時間を短縮し、メモリ需要と消費電力を減らすことを目的とする。
論文 参考訳(メタデータ) (2022-12-25T15:40:05Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Logic Shrinkage: Learned FPGA Netlist Sparsity for Efficient Neural
Network Inference [3.2296078260106174]
本稿では,LUTに基づくトポロジの学習最適化を提案する。
既存のアーキテクチャの実装では、LUT, Kあたりの入力数を手動で指定する必要がある。
本稿では,FPGA推論を対象とするニューラルネットワークにおいて,各LUTに対してKを自動的に学習することのできる,詳細なネットリスト解析手法である論理縮小手法を提案する。
論文 参考訳(メタデータ) (2021-12-04T14:23:24Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。