Towards a Decentralised Application-Centric Orchestration Framework in the Cloud-Edge Continuum
- URL: http://arxiv.org/abs/2504.00761v1
- Date: Tue, 01 Apr 2025 13:11:39 GMT
- Title: Towards a Decentralised Application-Centric Orchestration Framework in the Cloud-Edge Continuum
- Authors: Amjad Ullah, Andras Markus, Hacı İsmail Aslan, Tamas Kiss, Jozsef Kovacs, James Deslauriers, Amy L. Murphy, Yiming Wang Odej Kao,
- Abstract summary: Resource management solutions play a pivotal role by automating and managing tasks such as resource discovery, optimisation, application deployment, and lifecycle management.<n>This paper introduces Swarmchestrate, a decentralised, application-centric orchestration framework inspired by the self-organising principles of Swarms.
- Score: 0.20075899678041528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The efficient management of complex distributed applications in the Cloud-Edge continuum, including their deployment on heterogeneous computing resources and run-time operations, presents significant challenges. Resource management solutions -- also called orchestrators -- play a pivotal role by automating and managing tasks such as resource discovery, optimisation, application deployment, and lifecycle management, whilst ensuring the desired system performance. This paper introduces Swarmchestrate, a decentralised, application-centric orchestration framework inspired by the self-organising principles of Swarms. Swarmchestrate addresses the end-to-end management of distributed applications, from submission to optimal resource allocation across cloud and edge providers, as well as dynamic reconfiguration. Our initial findings include the implementation of the application deployment phase within a Cloud-Edge simulation environment, demonstrating the potential of Swarmchestrate. The results offer valuable insight into the coordination of resource offerings between various providers and optimised resource allocation, providing a foundation for designing scalable and efficient infrastructures.
Related papers
- Adaptive AI-based Decentralized Resource Management in the Cloud-Edge Continuum [4.989052212674281]
Cloud-Edge Continuum presents significant challenges for efficient resource management.<n>Traditional centralized approaches struggle to adapt to these changes due to their static nature.<n>This paper proposes a hybrid decentralized framework for dynamic application placement and resource management.
arXiv Detail & Related papers (2025-01-27T06:07:09Z) - Secure Resource Allocation via Constrained Deep Reinforcement Learning [49.15061461220109]
We present SARMTO, a framework that balances resource allocation, task offloading, security, and performance.<n>SARMTO consistently outperforms five baseline approaches, achieving up to a 40% reduction in system costs.<n>These enhancements highlight SARMTO's potential to revolutionize resource management in intricate distributed computing environments.
arXiv Detail & Related papers (2025-01-20T15:52:43Z) - Dynamic Scheduling Strategies for Resource Optimization in Computing Environments [0.29008108937701327]
This paper proposes a container scheduling method based on multi-objective optimization, which aims to balance key performance indicators such as resource utilization, load balancing and task completion efficiency.<n>The experimental results show that compared with traditional static rule algorithms and efficiency algorithms, the optimized scheduling scheme shows significant advantages in resource utilization, load balancing and burst task completion.
arXiv Detail & Related papers (2024-12-23T05:43:17Z) - Cluster-Based Multi-Agent Task Scheduling for Space-Air-Ground Integrated Networks [60.085771314013044]
Low-altitude economy holds significant potential for development in areas such as communication and sensing.<n>We propose a Clustering-based Multi-agent Deep Deterministic Policy Gradient (CMADDPG) algorithm to address the multi-UAV cooperative task scheduling challenges in SAGIN.
arXiv Detail & Related papers (2024-12-14T06:17:33Z) - A Comprehensive Survey on Joint Resource Allocation Strategies in Federated Edge Learning [9.806901443019008]
Federated Edge Learning (FEL) enables model training in a distributed environment while ensuring user privacy by using physical separation for each user data.
With the development of complex application scenarios such as the Internet of Things (IoT) and Smart Earth, the conventional resource allocation schemes can no longer effectively support these growing computational and communication demands.
This paper systematically addresses the multifaceted challenges of computation and communication, with the growing multiple resource demands.
arXiv Detail & Related papers (2024-10-10T13:02:00Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Dynamic Resource Allocation for Metaverse Applications with Deep
Reinforcement Learning [64.75603723249837]
This work proposes a novel framework to dynamically manage and allocate different types of resources for Metaverse applications.
We first propose an effective solution to divide applications into groups, namely MetaInstances, where common functions can be shared among applications.
Then, to capture the real-time, dynamic, and uncertain characteristics of request arrival and application departure processes, we develop a semi-Markov decision process-based framework.
arXiv Detail & Related papers (2023-02-27T00:30:01Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
Network slicing is proposed as a promising solution for resource utilization in 5G and future networks.
We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures.
We propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm.
arXiv Detail & Related papers (2021-11-16T11:54:09Z) - Reproducible Performance Optimization of Complex Applications on the
Edge-to-Cloud Continuum [55.6313942302582]
We propose a methodology to support the optimization of real-life applications on the Edge-to-Cloud Continuum.
Our approach relies on a rigorous analysis of possible configurations in a controlled testbed environment to understand their behaviour.
Our methodology can be generalized to other applications in the Edge-to-Cloud Continuum.
arXiv Detail & Related papers (2021-08-04T07:35:14Z) - Adaptive Stochastic ADMM for Decentralized Reinforcement Learning in
Edge Industrial IoT [106.83952081124195]
Reinforcement learning (RL) has been widely investigated and shown to be a promising solution for decision-making and optimal control processes.
We propose an adaptive ADMM (asI-ADMM) algorithm and apply it to decentralized RL with edge-computing-empowered IIoT networks.
Experiment results show that our proposed algorithms outperform the state of the art in terms of communication costs and scalability, and can well adapt to complex IoT environments.
arXiv Detail & Related papers (2021-06-30T16:49:07Z) - Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks [22.06811314358283]
Wireless networks used for Internet of Things (IoT) are expected to largely involve cloud-based computing and processing.
In a cloud environment, dynamic computational resource allocation is essential to save energy while maintaining the performance of the processes.
This paper models this dynamic computational resource allocation problem into a Markov Decision Process (MDP) and designs a model-based reinforcement-learning agent to optimise the dynamic resource allocation of the CPU usage.
The results show that our agent rapidly converges to the optimal policy, stably performs in different settings, outperforms or at least equally performs compared to a baseline algorithm in energy savings for different scenarios.
arXiv Detail & Related papers (2020-10-10T15:16:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.