Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks
- URL: http://arxiv.org/abs/2010.05024v1
- Date: Sat, 10 Oct 2020 15:16:26 GMT
- Title: Reinforcement Learning on Computational Resource Allocation of
Cloud-based Wireless Networks
- Authors: Beiran Chen, Yi Zhang, George Iosifidis, Mingming Liu
- Abstract summary: Wireless networks used for Internet of Things (IoT) are expected to largely involve cloud-based computing and processing.
In a cloud environment, dynamic computational resource allocation is essential to save energy while maintaining the performance of the processes.
This paper models this dynamic computational resource allocation problem into a Markov Decision Process (MDP) and designs a model-based reinforcement-learning agent to optimise the dynamic resource allocation of the CPU usage.
The results show that our agent rapidly converges to the optimal policy, stably performs in different settings, outperforms or at least equally performs compared to a baseline algorithm in energy savings for different scenarios.
- Score: 22.06811314358283
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Wireless networks used for Internet of Things (IoT) are expected to largely
involve cloud-based computing and processing. Softwarised and centralised
signal processing and network switching in the cloud enables flexible network
control and management. In a cloud environment, dynamic computational resource
allocation is essential to save energy while maintaining the performance of the
processes. The stochastic features of the Central Processing Unit (CPU) load
variation as well as the possible complex parallelisation situations of the
cloud processes makes the dynamic resource allocation an interesting research
challenge. This paper models this dynamic computational resource allocation
problem into a Markov Decision Process (MDP) and designs a model-based
reinforcement-learning agent to optimise the dynamic resource allocation of the
CPU usage. Value iteration method is used for the reinforcement-learning agent
to pick up the optimal policy during the MDP. To evaluate our performance we
analyse two types of processes that can be used in the cloud-based IoT networks
with different levels of parallelisation capabilities, i.e., Software-Defined
Radio (SDR) and Software-Defined Networking (SDN). The results show that our
agent rapidly converges to the optimal policy, stably performs in different
parameter settings, outperforms or at least equally performs compared to a
baseline algorithm in energy savings for different scenarios.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Optimizing Load Scheduling in Power Grids Using Reinforcement Learning and Markov Decision Processes [0.0]
This paper proposes a reinforcement learning (RL) approach to address the challenges of dynamic load scheduling.
Our results show that the RL-based method provides a robust and scalable solution for real-time load scheduling.
arXiv Detail & Related papers (2024-10-23T09:16:22Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
We propose a switchable decision to accelerate inference by dynamically assigning resources for each data instance.
Our method benefits from less cost during inference while keeping the same accuracy.
arXiv Detail & Related papers (2024-05-07T17:44:54Z) - Constrained Reinforcement Learning for Adaptive Controller Synchronization in Distributed SDN [7.277944770202078]
This work focuses on examining deep reinforcement learning (DRL) techniques, encompassing both value-based and policy-based methods, to guarantee an upper latency threshold for AR/VR task offloading.
Our evaluation results indicate that while value-based methods excel in optimizing individual network metrics such as latency or load balancing, policy-based approaches exhibit greater robustness in adapting to sudden network changes or reconfiguration.
arXiv Detail & Related papers (2024-01-21T21:57:22Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
We propose a novel algorithm for energy-efficient, low-latency, accurate inference at the wireless edge.
We consider a scenario where new data are continuously generated/collected by a set of devices and are handled through a dynamic queueing system.
arXiv Detail & Related papers (2023-05-18T12:46:42Z) - Reinforcement Learning in Computing and Network Convergence
Orchestration [0.0]
The concept of Computing and Network Convergence (CNC) has been proposed and attracted wide attention.
We design a CNC orchestration method using reinforcement learning (RL), which is the first attempt, that can flexibly allocate and schedule computing resources and network resources.
Experiments shows that the proposed RL-based method can achieve higher profit and lower latency than the greedy method, random selection and balanced-resource method.
arXiv Detail & Related papers (2022-09-22T03:10:45Z) - State-Augmented Learnable Algorithms for Resource Management in Wireless
Networks [124.89036526192268]
We propose a state-augmented algorithm for solving resource management problems in wireless networks.
We show that the proposed algorithm leads to feasible and near-optimal RRM decisions.
arXiv Detail & Related papers (2022-07-05T18:02:54Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
5G beyond is an end-edge-cloud orchestrated network that can exploit heterogeneous capabilities of the end devices, edge servers, and the cloud.
In multi user wireless networks, diverse application requirements and the possibility of various radio access modes for communication among devices make it challenging to design an optimal computation offloading scheme.
Deep Reinforcement Learning (DRL) is an emerging technique to address such an issue with limited and less accurate network information.
arXiv Detail & Related papers (2020-11-17T05:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.