Observation of Quantum Darwinism and the Origin of Classicality with Superconducting Circuits
- URL: http://arxiv.org/abs/2504.00781v2
- Date: Thu, 03 Apr 2025 05:21:40 GMT
- Title: Observation of Quantum Darwinism and the Origin of Classicality with Superconducting Circuits
- Authors: Zitian Zhu, Kiera Salice, Akram Touil, Zehang Bao, Zixuan Song, Pengfei Zhang, Hekang Li, Zhen Wang, Chao Song, Qiujiang Guo, H. Wang, Rubem Mondaini,
- Abstract summary: How can we rationalize everyday classical observations from an inherently quantum world?<n>Quantum Darwinism offers a compelling framework to explain this emergence of classicality.<n>We observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information.
- Score: 9.09683951826704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transition from quantum to classical behavior is a central question in modern physics. How can we rationalize everyday classical observations from an inherently quantum world? For instance, what makes two people, each absorbing an independent fraction of photons scattered from this screen or paper, agree on the observation of the text written here? Quantum Darwinism offers a compelling framework to explain this emergence of classicality by proposing that the environment redundantly encodes information about a quantum system, leading to the objective reality we perceive. Here, by leveraging cutting-edge superconducting quantum circuits, we observe the highly structured branching quantum states that support classicality and the saturation of quantum mutual information, establishing a robust verification of the foundational framework of quantum Darwinism and the accompanying underlying geometric structure of quantum states. Additionally, we propose a particular class of observables that can be used as a separate quantifier for classicality, originating a computationally and experimentally inexpensive method to probe quantum-to-classical transitions. Our investigation delves into how the quantum effects are inaccessible to observers, allowing only classical properties to be detected. It experimentally demonstrates the physical framework through which everyday classical observations emerge from underlying quantum principles and paves the way to settling the measurement problem.
Related papers
- Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Observations in Quantum Cosmology [0.0]
We look at whether a canonical quantization of general relativity can produce testable predictions for cosmology.
In particular, we examine how this approach can be used to model the evolution of primordial perturbations.
We conclude that the subject of quantum geometrodynamics illuminates conceptual issues in quantum gravitation.
arXiv Detail & Related papers (2023-06-26T18:00:01Z) - Quantum Relativity [0.0]
A new quantum postulate is suggested to restore classical locality and causality to quantum physics.
This postulate supports the EPR view that quantum mechanics is incomplete, while also staying compatible to the Bohr view that nothing exists beyond the quantum.
arXiv Detail & Related papers (2023-02-04T02:05:25Z) - Quantum Theory of the Classical: Einselection, Envariance, Quantum
Darwinism and Extantons [0.0]
Core quantum postulates including the superposition principle and the unitarity of evolutions are natural and strikingly simple.
I show that -- when supplemented with a limited version of predictability (captured in the textbook accounts by the repeatability postulate) -- these core postulates can account for all the symptoms of classicality.
arXiv Detail & Related papers (2022-08-18T18:46:53Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Probing Topological Spin Liquids on a Programmable Quantum Simulator [40.96261204117952]
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states.
In our approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg blockade creates frustrated quantum states.
The onset of a quantum spin liquid phase of the paradigmatic toric code type is detected by evaluating topological string operators.
arXiv Detail & Related papers (2021-04-09T00:18:12Z) - Macroscopic randomness for quantum entanglement generation [0.0]
Quantum entanglement between two or more bipartite entities is a core concept in quantum information areas.
This paper presents a pure classical method of on-demand entangled light-pair generation.
arXiv Detail & Related papers (2021-03-04T07:58:49Z) - Classical limit of quantum mechanics for damped driven oscillatory
systems: Quantum-classical correspondence [0.0]
We develop a quantum formalism on the basis of a linear-invariant theorem.
We illustrate the correspondence of the quantum energy with the classical one in detail.
arXiv Detail & Related papers (2020-10-18T12:12:01Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.