Conditional Temporal Neural Processes with Covariance Loss
- URL: http://arxiv.org/abs/2504.00794v1
- Date: Tue, 01 Apr 2025 13:51:44 GMT
- Title: Conditional Temporal Neural Processes with Covariance Loss
- Authors: Boseon Yoo, Jiwoo Lee, Janghoon Ju, Seijun Chung, Soyeon Kim, Jaesik Choi,
- Abstract summary: We introduce a novel loss function, Covariance Loss, which is conceptually equivalent to conditional neural processes.<n>We conduct extensive sets of experiments on real-world datasets with state-of-the-art models.
- Score: 19.805881561847492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a novel loss function, Covariance Loss, which is conceptually equivalent to conditional neural processes and has a form of regularization so that is applicable to many kinds of neural networks. With the proposed loss, mappings from input variables to target variables are highly affected by dependencies of target variables as well as mean activation and mean dependencies of input and target variables. This nature enables the resulting neural networks to become more robust to noisy observations and recapture missing dependencies from prior information. In order to show the validity of the proposed loss, we conduct extensive sets of experiments on real-world datasets with state-of-the-art models and discuss the benefits and drawbacks of the proposed Covariance Loss.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning [12.947265104477237]
Pursuing causality from data is a fundamental problem in scientific discovery, treatment intervention, and transfer learning.<n>This paper introduces a novel algorithmic method for addressing nonparametric invariance and causality learning in regression models across multiple environments.<n>The proposed Focused Adrial Invariant Regularization framework utilizes an innovative minimax optimization approach that drives regression models toward prediction-invariant solutions through adversarial testing.
arXiv Detail & Related papers (2024-05-07T23:37:40Z) - Loss Jump During Loss Switch in Solving PDEs with Neural Networks [11.123662745891677]
Using neural networks to solve partial differential equations (PDEs) is gaining popularity as an alternative approach in the scientific computing community.
This work focuses on investigating how different loss functions impact the training of neural networks for solving PDEs.
arXiv Detail & Related papers (2024-05-06T01:18:36Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - GIT: Detecting Uncertainty, Out-Of-Distribution and Adversarial Samples
using Gradients and Invariance Transformations [77.34726150561087]
We propose a holistic approach for the detection of generalization errors in deep neural networks.
GIT combines the usage of gradient information and invariance transformations.
Our experiments demonstrate the superior performance of GIT compared to the state-of-the-art on a variety of network architectures.
arXiv Detail & Related papers (2023-07-05T22:04:38Z) - On the ISS Property of the Gradient Flow for Single Hidden-Layer Neural
Networks with Linear Activations [0.0]
We investigate the effects of overfitting on the robustness of gradient-descent training when subject to uncertainty on the gradient estimation.
We show that the general overparametrized formulation introduces a set of spurious equilibria which lay outside the set where the loss function is minimized.
arXiv Detail & Related papers (2023-05-17T02:26:34Z) - Jensen-Shannon Divergence Based Novel Loss Functions for Bayesian Neural Networks [2.4554686192257424]
We formulate a novel loss function for BNNs based on a new modification to the generalized Jensen-Shannon (JS) divergence, which is bounded.<n>We find that the JS divergence-based variational inference is intractable, and hence employed a constrained optimization framework to formulate these losses.<n>Our theoretical analysis and empirical experiments on multiple regression and classification data sets suggest that the proposed losses perform better than the KL divergence-based loss, especially when the data sets are noisy or biased.
arXiv Detail & Related papers (2022-09-23T01:47:09Z) - Which Invariance Should We Transfer? A Causal Minimax Learning Approach [18.71316951734806]
We present a comprehensive minimax analysis from a causal perspective.
We propose an efficient algorithm to search for the subset with minimal worst-case risk.
The effectiveness and efficiency of our methods are demonstrated on synthetic data and the diagnosis of Alzheimer's disease.
arXiv Detail & Related papers (2021-07-05T09:07:29Z) - Non-Singular Adversarial Robustness of Neural Networks [58.731070632586594]
Adrial robustness has become an emerging challenge for neural network owing to its over-sensitivity to small input perturbations.
We formalize the notion of non-singular adversarial robustness for neural networks through the lens of joint perturbations to data inputs as well as model weights.
arXiv Detail & Related papers (2021-02-23T20:59:30Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z) - Uncertainty in Neural Relational Inference Trajectory Reconstruction [3.4806267677524896]
We extend the Neural Inference model to output both a mean standard deviation for each component of a space vector and an appropriate loss function.
We show that the physical meaning of the variables is important when considering the uncertainty and demonstrate the existence of pathological local minima.
arXiv Detail & Related papers (2020-06-24T12:37:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.