論文の概要: NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
- arxiv url: http://arxiv.org/abs/2504.00859v1
- Date: Tue, 01 Apr 2025 14:50:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:21:51.875200
- Title: NeuRadar: Neural Radiance Fields for Automotive Radar Point Clouds
- Title(参考訳): NeuRadar: 自動車用レーダー点雲のためのニューラル放射場
- Authors: Mahan Rafidashti, Ji Lan, Maryam Fatemi, Junsheng Fu, Lars Hammarstrand, Lennart Svensson,
- Abstract要約: 我々は、レーダー点雲、カメラ画像、ライダー点雲を共同で生成するNeuRadarについて紹介する。
レーダNeRFのさらなる開発を促進するため,NeuRadarのソースコードをリリースする。
- 参考スコア(独自算出の注目度): 4.000915046854788
- License:
- Abstract: Radar is an important sensor for autonomous driving (AD) systems due to its robustness to adverse weather and different lighting conditions. Novel view synthesis using neural radiance fields (NeRFs) has recently received considerable attention in AD due to its potential to enable efficient testing and validation but remains unexplored for radar point clouds. In this paper, we present NeuRadar, a NeRF-based model that jointly generates radar point clouds, camera images, and lidar point clouds. We explore set-based object detection methods such as DETR, and propose an encoder-based solution grounded in the NeRF geometry for improved generalizability. We propose both a deterministic and a probabilistic point cloud representation to accurately model the radar behavior, with the latter being able to capture radar's stochastic behavior. We achieve realistic reconstruction results for two automotive datasets, establishing a baseline for NeRF-based radar point cloud simulation models. In addition, we release radar data for ZOD's Sequences and Drives to enable further research in this field. To encourage further development of radar NeRFs, we release the source code for NeuRadar.
- Abstract(参考訳): レーダーは、悪天候と異なる照明条件に対する堅牢性のために、自律運転(AD)システムにとって重要なセンサーである。
ニューラルレージアンス場(NeRF)を用いた新しいビュー合成は、効率的なテストと検証を可能にする可能性から、最近ADでかなりの注目を集めているが、レーダポイント雲では探索されていない。
本稿では,レーダ点雲,カメラ画像,ライダー点雲を共同生成するNeuRadarについて述べる。
我々は,DETRなどのセットベースオブジェクト検出手法について検討し,一般化性を向上させるため,NeRF幾何を基盤としたエンコーダベースのソリューションを提案する。
本稿では,レーダの確率的挙動を正確にモデル化するために,決定論的および確率論的点雲表現の両方を提案し,後者はレーダの確率的挙動を捉えることができる。
我々は2つの自動車データセットの現実的な再構築結果を達成し、NeRFベースのレーダポイントクラウドシミュレーションモデルのベースラインを確立する。
また、ZODのSequences and Drivesのレーダデータを公開し、この分野のさらなる研究を可能にする。
レーダNeRFのさらなる開発を促進するため,NeuRadarのソースコードをリリースする。
関連論文リスト
- SparseRadNet: Sparse Perception Neural Network on Subsampled Radar Data [5.344444942640663]
レーダー生データは、しばしば過剰なノイズを含むが、レーダー点雲は限られた情報しか保持しない。
本稿では,適応的なサブサンプリング手法と,空間パターンを利用したネットワークアーキテクチャを提案する。
RADIalデータセットの実験により,SparseRadNetはオブジェクト検出における最先端(SOTA)性能を超え,自由空間セグメンテーションにおけるSOTA精度に近づいた。
論文 参考訳(メタデータ) (2024-06-15T11:26:10Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
ミリ波レーダセンサは、環境条件下では安定した性能を維持している。
レーダー点雲は比較的希薄で、巨大なゴーストポイントを含んでいる。
本稿では3次元ミリ波レーダデータに対する新しい点雲超解像法,Radar-diffusionを提案する。
論文 参考訳(メタデータ) (2024-04-09T04:41:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Semantic Segmentation of Radar Detections using Convolutions on Point
Clouds [59.45414406974091]
本稿では,レーダ検出を点雲に展開する深層学習手法を提案する。
このアルゴリズムは、距離依存クラスタリングと入力点雲の事前処理により、レーダ固有の特性に適応する。
我々のネットワークは、レーダポイント雲のセマンティックセグメンテーションのタスクにおいて、PointNet++に基づく最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2023-05-22T07:09:35Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z) - Probabilistic Oriented Object Detection in Automotive Radar [8.281391209717103]
本稿では,レーダー物体検出のためのディープラーニングに基づくアルゴリズムを提案する。
我々は102544フレームの生レーダと同期LiDARデータを備えた新しいマルチモーダルデータセットを作成しました。
我々の最高性能レーダ検出モデルは、指向性IoU0.3で77.28%APを達成した。
論文 参考訳(メタデータ) (2020-04-11T05:29:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。