論文の概要: Feature-Preserving Mesh Decimation for Normal Integration
- arxiv url: http://arxiv.org/abs/2504.00867v1
- Date: Tue, 01 Apr 2025 14:56:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:19:39.115939
- Title: Feature-Preserving Mesh Decimation for Normal Integration
- Title(参考訳): 正規化のための特徴保存メッシュの定式化
- Authors: Moritz Heep, Sven Behnke, Eduard Zell,
- Abstract要約: 正規積分は、測光ステレオから得られる通常の地図から3次元曲面を再構成する。
本研究では,通常の積分に先立って,高密度画素格子をスパース異方性三角形メッシュに置き換える。
- 参考スコア(独自算出の注目度): 16.320467417627277
- License:
- Abstract: Normal integration reconstructs 3D surfaces from normal maps obtained e.g. by photometric stereo. These normal maps capture surface details down to the pixel level but require large computational resources for integration at high resolutions. In this work, we replace the dense pixel grid with a sparse anisotropic triangle mesh prior to normal integration. We adapt the triangle mesh to the local geometry in the case of complex surface structures and remove oversampling from flat featureless regions. For high-resolution images, the resulting compression reduces normal integration runtimes from hours to minutes while maintaining high surface accuracy. Our main contribution is the derivation of the well-known quadric error measure from mesh decimation for screen space applications and its combination with optimal Delaunay triangulation.
- Abstract(参考訳): 正規積分は、egから得られる正規写像から光度ステレオによって3次元曲面を再構成する。
これらの正規写像は、表面の詳細をピクセルレベルまでキャプチャするが、高分解能で積分するために大きな計算資源を必要とする。
本研究では,通常の積分に先立って,高密度画素格子をスパース異方性三角形メッシュに置き換える。
複雑な表面構造の場合,三角形メッシュを局所幾何学に適応させ,平坦な特徴のない領域からのオーバーサンプリングを除去する。
高解像度画像の場合、結果として得られる圧縮により、通常の統合ランタイムは数時間から数分に短縮され、高い表面精度が維持される。
我々の主な貢献は、スクリーン空間応用のためのメッシュデシメーションからよく知られた二次誤差測度の導出と、最適なデラウネー三角測量の組み合わせである。
関連論文リスト
- GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering [69.67264955234494]
GeoSplattingは、3DGSを明示的な幾何学的ガイダンスと微分可能なPBR方程式で拡張する新しいハイブリッド表現である。
多様なデータセットにわたる総合的な評価は、GeoSplattingの優位性を示している。
論文 参考訳(メタデータ) (2024-10-31T17:57:07Z) - An Adaptive Screen-Space Meshing Approach for Normal Integration [0.0]
この研究は、画像領域に適応的な表面三角測量を導入し、その後、三角形メッシュ上で通常の積分を行う。
曲率に基づいて、平坦な領域を識別し、画素を三角形に集約する。
ピクセルグリッドと比較して、トライアングルメッシュは表面の詳細に局所的に適応し、スペーサー表現を可能にします。
論文 参考訳(メタデータ) (2024-09-25T13:12:58Z) - PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction [37.14913599050765]
高忠実表面再構成を実現するために,高速平面型ガウススプラッティング再構成表現(PGSR)を提案する。
次に、大域的幾何精度を維持するために、一視点幾何、多視点測光、幾何正則化を導入する。
提案手法は3DGS法およびNeRF法よりも優れた高忠実度レンダリングと幾何再構成を維持しつつ,高速なトレーニングとレンダリングを実現する。
論文 参考訳(メタデータ) (2024-06-10T17:59:01Z) - High-quality Surface Reconstruction using Gaussian Surfels [18.51978059665113]
本稿では,3次元ガウス点におけるフレキシブルな最適化手法の利点を組み合わせるために,新しい点ベース表現であるガウス波について提案する。
これは、3Dガウス点のzスケールを0に設定し、元の3D楕円体を2D楕円形に効果的に平らにする。
局所的なz軸を通常の方向として扱うことにより、最適化安定性と表面アライメントを大幅に改善する。
論文 参考訳(メタデータ) (2024-04-27T04:13:39Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting Guidance [48.72360034876566]
本稿では,3次元ガウススプラッティングから高精細な表面を復元する神経暗黙的表面再構成パイプラインを提案する。
3Dガウススプラッティングの利点は、詳細な構造を持つ高密度の点雲を生成することができることである。
我々は3次元ガウスを極端に薄くすることで、表面に近い中心を引っ張るスケール正則化器を導入する。
論文 参考訳(メタデータ) (2023-12-01T07:04:47Z) - PRS: Sharp Feature Priors for Resolution-Free Surface Remeshing [30.28380889862059]
本稿では,自動特徴検出とリメッシングのためのデータ駆動方式を提案する。
提案アルゴリズムは,Fスコアの26%,知覚値の42%がtextRMSE_textv$である。
論文 参考訳(メタデータ) (2023-11-30T12:15:45Z) - GeoNet++: Iterative Geometric Neural Network with Edge-Aware Refinement
for Joint Depth and Surface Normal Estimation [204.13451624763735]
本研究では,エッジアウェア・リファインメント(GeoNet++)を用いた幾何ニューラルネットワークを提案し,単一の画像から深さと表面正規写像の両方を共同で予測する。
geonet++は、強い3d一貫性と鋭い境界を持つ深さと表面の正常を効果的に予測する。
画素単位の誤差/精度を評価することに焦点を当てた現在の測定値とは対照的に、3DGMは予測深度が高品質な3D表面の正常を再構築できるかどうかを測定する。
論文 参考訳(メタデータ) (2020-12-13T06:48:01Z) - Deep Active Surface Models [60.027353171412216]
アクティブサーフェスモデルは複雑な3次元表面をモデル化するのに有用な長い歴史を持っているが、ディープネットワークと組み合わせて使用されるのはアクティブ・コンターのみである。
グラフ畳み込みネットワークにシームレスに統合して、洗練された滑らかさを強制できるレイヤを導入します。
論文 参考訳(メタデータ) (2020-11-17T18:48:28Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
PUGeo-Netと呼ばれる新しいディープニューラルネットワークを用いた一様高密度点雲を生成する手法を提案する。
その幾何学中心の性質のおかげで、PUGeo-Netはシャープな特徴を持つCADモデルとリッチな幾何学的詳細を持つスキャンされたモデルの両方でうまく機能する。
論文 参考訳(メタデータ) (2020-02-24T14:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。