論文の概要: An Adaptive Screen-Space Meshing Approach for Normal Integration
- arxiv url: http://arxiv.org/abs/2409.16907v1
- Date: Wed, 25 Sep 2024 13:12:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-27 03:45:10.451838
- Title: An Adaptive Screen-Space Meshing Approach for Normal Integration
- Title(参考訳): 正規化のための適応型スクリーン空間メッシュ手法
- Authors: Moritz Heep, Eduard Zell,
- Abstract要約: この研究は、画像領域に適応的な表面三角測量を導入し、その後、三角形メッシュ上で通常の積分を行う。
曲率に基づいて、平坦な領域を識別し、画素を三角形に集約する。
ピクセルグリッドと比較して、トライアングルメッシュは表面の詳細に局所的に適応し、スペーサー表現を可能にします。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing surfaces from normals is a key component of photometric stereo. This work introduces an adaptive surface triangulation in the image domain and afterwards performs the normal integration on a triangle mesh. Our key insight is that surface curvature can be computed from normals. Based on the curvature, we identify flat areas and aggregate pixels into triangles. The approximation quality is controlled by a single user parameter facilitating a seamless generation of low- to high-resolution meshes. Compared to pixel grids, our triangle meshes adapt locally to surface details and allow for a sparser representation. Our new mesh-based formulation of the normal integration problem is strictly derived from discrete differential geometry and leads to well-conditioned linear systems. Results on real and synthetic data show that 10 to 100 times less vertices are required than pixels. Experiments suggest that this sparsity translates into a sublinear runtime in the number of pixels. For 64 MP normal maps, our meshing-first approach generates and integrates meshes in minutes while pixel-based approaches require hours just for the integration.
- Abstract(参考訳): 通常の表面からの再構成は、測光ステレオの重要な構成要素である。
この研究は、画像領域に適応的な表面三角測量を導入し、その後、三角形メッシュ上で通常の積分を行う。
我々の重要な洞察は、表面の曲率を通常の値から計算できるということである。
曲率に基づいて、平坦な領域を識別し、画素を三角形に集約する。
近似品質は、低-高分解能メッシュのシームレスな生成を容易にする単一のユーザパラメータによって制御される。
ピクセルグリッドと比較して、トライアングルメッシュは表面の詳細に局所的に適応し、スペーサー表現を可能にします。
我々の新しいメッシュベースの正規積分問題の定式化は、偏微分幾何学から厳密に導かれ、良条件線形系へと導かれる。
実データと合成データの結果は、ピクセルの10倍から100倍の頂点を必要とすることを示している。
実験により、この空間性はピクセル数でサブ線形ランタイムに変換されることが示唆された。
64MPの通常のマップでは、メッシュファーストのアプローチは数分でメッシュを生成し、統合します。
関連論文リスト
- SpaceMesh: A Continuous Representation for Learning Manifold Surface Meshes [61.110517195874074]
本稿では,ニューラルネットワークの出力として,複雑な接続性を持つ多様体多角形メッシュを直接生成する手法を提案する。
私たちの重要なイノベーションは、各メッシュで連続的な遅延接続空間を定義することです。
アプリケーションでは、このアプローチは生成モデルから高品質な出力を得るだけでなく、メッシュ修復のような挑戦的な幾何処理タスクを直接学習することを可能にする。
論文 参考訳(メタデータ) (2024-09-30T17:59:03Z) - Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based
View Synthesis [70.40950409274312]
我々は、細い構造を再構築する能力を損なうことなく、表面への収束を促すために密度場を変更する。
また, メッシュの単純化と外観モデルの適合により, 融合型メッシュ方式を開発した。
私たちのモデルで生成されたコンパクトメッシュは、モバイルデバイス上でリアルタイムでレンダリングできます。
論文 参考訳(メタデータ) (2024-02-19T18:59:41Z) - Oriented-grid Encoder for 3D Implicit Representations [10.02138130221506]
本論文は,3次元幾何エンコーダの3次元特性を明示的に利用した最初のものである。
提案手法は,従来の手法と比較して最先端の結果が得られる。
論文 参考訳(メタデータ) (2024-02-09T19:28:13Z) - Polyhedral Surface: Self-supervised Point Cloud Reconstruction Based on
Polyhedral Surface [14.565612328814312]
局所表面を表す新しい多面体表面を提案する。
ニューラルネットワークを導入する上で重要な局所座標系は不要である。
提案手法は,3つの一般的なネットワーク上での最先端の処理結果を実現する。
論文 参考訳(メタデータ) (2023-10-23T04:24:31Z) - Dr. KID: Direct Remeshing and K-set Isometric Decomposition for Scalable
Physicalization of Organic Shapes [5.385289130801911]
KID(Dr. KID)は、ジャガイモ形有機モデルの物理化に等尺分解を用いるアルゴリズムである。
クラスタリングには、距離関数として定義される三角形間の類似性が必要である。
よりスムーズな結果を得るために、三角形の分割と曲率を意識したクラスタリングを用い、3Dプリンティングのために曲面の三角形パッチを生成する。
論文 参考訳(メタデータ) (2023-04-06T08:56:18Z) - NeuralMeshing: Differentiable Meshing of Implicit Neural Representations [63.18340058854517]
ニューラルな暗黙表現から表面メッシュを抽出する新しい微分可能なメッシュアルゴリズムを提案する。
本手法は,通常のテッセルレーションパターンと,既存の手法に比べて三角形面の少ないメッシュを生成する。
論文 参考訳(メタデータ) (2022-10-05T16:52:25Z) - VoGE: A Differentiable Volume Renderer using Gaussian Ellipsoids for
Analysis-by-Synthesis [62.47221232706105]
本稿では,ガウス再構成カーネルをボリュームプリミティブとして利用するVoGEを提案する。
本稿では,VoGEを用いて効率よくレンダリングを行うために,体積密度集約と粗大な描画戦略に関する近似クローズフォーム解を提案する。
VoGEは、オブジェクトポーズ推定、形状/テクスチャフィッティング、推論など、様々な視覚タスクに適用された場合、SoTAより優れている。
論文 参考訳(メタデータ) (2022-05-30T19:52:11Z) - Differentiable Surface Triangulation [40.13834693745158]
曲面三角関数の空間上での頂点ごとあるいは面ごとの微分可能な対象関数の最適化を可能にする微分曲面三角関数を提案する。
提案手法は, 適切な重み付けを施したデラウネー三角測量により, 任意の2次元三角測量が達成できることを示す。
形状を展開可能な集合に分解し,各集合を適切な境界制約で異なったメッシュ化することにより,アルゴリズムを3Dに拡張する。
論文 参考訳(メタデータ) (2021-09-22T12:42:43Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
学習に基づく3次元再構成に対応する3次元形状表現は、機械学習とコンピュータグラフィックスにおいてオープンな問題である。
ニューラル3D再構成に関するこれまでの研究は、利点だけでなく、ポイントクラウド、ボクセル、サーフェスメッシュ、暗黙の関数表現といった制限も示していた。
Deformable Tetrahedral Meshes (DefTet) を, ボリューム四面体メッシュを再構成問題に用いるパラメータ化として導入する。
論文 参考訳(メタデータ) (2020-11-03T02:57:01Z) - PUGeo-Net: A Geometry-centric Network for 3D Point Cloud Upsampling [103.09504572409449]
PUGeo-Netと呼ばれる新しいディープニューラルネットワークを用いた一様高密度点雲を生成する手法を提案する。
その幾何学中心の性質のおかげで、PUGeo-Netはシャープな特徴を持つCADモデルとリッチな幾何学的詳細を持つスキャンされたモデルの両方でうまく機能する。
論文 参考訳(メタデータ) (2020-02-24T14:13:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。