QSViT: A Methodology for Quantizing Spiking Vision Transformers
- URL: http://arxiv.org/abs/2504.00948v1
- Date: Tue, 01 Apr 2025 16:34:46 GMT
- Title: QSViT: A Methodology for Quantizing Spiking Vision Transformers
- Authors: Rachmad Vidya Wicaksana Putra, Saad Iftikhar, Muhammad Shafique,
- Abstract summary: Vision Transformer (ViT)-based models have shown state-of-the-art performance (e.g., accuracy) in vision-based AI tasks.<n>However, realizing their capability in resource-constrained embedded AI systems is challenging due to their inherent large memory footprints.<n>We propose QSViT, a novel design methodology to compress the SViT models through a systematic quantization strategy.
- Score: 5.343921650701002
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision Transformer (ViT)-based models have shown state-of-the-art performance (e.g., accuracy) in vision-based AI tasks. However, realizing their capability in resource-constrained embedded AI systems is challenging due to their inherent large memory footprints and complex computations, thereby incurring high power/energy consumption. Recently, Spiking Vision Transformer (SViT)-based models have emerged as alternate low-power ViT networks. However, their large memory footprints still hinder their applicability for resource-constrained embedded AI systems. Therefore, there is a need for a methodology to compress SViT models without degrading the accuracy significantly. To address this, we propose QSViT, a novel design methodology to compress the SViT models through a systematic quantization strategy across different network layers. To do this, our QSViT employs several key steps: (1) investigating the impact of different precision levels in different network layers, (2) identifying the appropriate base quantization settings for guiding bit precision reduction, (3) performing a guided quantization strategy based on the base settings to select the appropriate quantization setting, and (4) developing an efficient quantized network based on the selected quantization setting. The experimental results demonstrate that, our QSViT methodology achieves 22.75% memory saving and 21.33% power saving, while also maintaining high accuracy within 2.1% from that of the original non-quantized SViT model on the ImageNet dataset. These results highlight the potential of QSViT methodology to pave the way toward the efficient SViT deployments on resource-constrained embedded AI systems.
Related papers
- Precision Neural Network Quantization via Learnable Adaptive Modules [27.323901068182234]
Quantization Aware Training (QAT) is a neural network quantization technique that compresses model size and improves operational efficiency.
We propose an effective learnable adaptive neural network quantization method, called Adaptive Step Size Quantization (ASQ)
arXiv Detail & Related papers (2025-04-24T05:46:25Z) - BHViT: Binarized Hybrid Vision Transformer [53.38894971164072]
Model binarization has made significant progress in enabling real-time and energy-efficient computation for convolutional neural networks (CNN)<n>We propose BHViT, a binarization-friendly hybrid ViT architecture and its full binarization model with the guidance of three important observations.<n>Our proposed algorithm achieves SOTA performance among binary ViT methods.
arXiv Detail & Related papers (2025-03-04T08:35:01Z) - Survey of Quantization Techniques for On-Device Vision-based Crack Detection [5.967661928760498]
Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure.<n>Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods.<n>This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5.
arXiv Detail & Related papers (2025-02-04T12:29:29Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - AdaLog: Post-Training Quantization for Vision Transformers with Adaptive Logarithm Quantizer [54.713778961605115]
Vision Transformer (ViT) has become one of the most prevailing fundamental backbone networks in the computer vision community.
We propose a novel non-uniform quantizer, dubbed the Adaptive Logarithm AdaLog (AdaLog) quantizer.
arXiv Detail & Related papers (2024-07-17T18:38:48Z) - RLEEGNet: Integrating Brain-Computer Interfaces with Adaptive AI for
Intuitive Responsiveness and High-Accuracy Motor Imagery Classification [0.0]
We introduce a framework that leverages Reinforcement Learning with Deep Q-Networks (DQN) for classification tasks.
We present a preprocessing technique for multiclass motor imagery (MI) classification in a One-Versus-The-Rest (OVR) manner.
The integration of DQN with a 1D-CNN-LSTM architecture optimize the decision-making process in real-time.
arXiv Detail & Related papers (2024-02-09T02:03:13Z) - MPTQ-ViT: Mixed-Precision Post-Training Quantization for Vision
Transformer [7.041718444626999]
We propose a mixed-precision post-training quantization framework for vision transformers (MPTQ-ViT)
Our experiments on ViT, DeiT, and Swin demonstrate significant accuracy improvements compared with SOTA on the ImageNet dataset.
arXiv Detail & Related papers (2024-01-26T14:25:15Z) - LRP-QViT: Mixed-Precision Vision Transformer Quantization via Layer-wise
Relevance Propagation [0.0]
We introduce LRP-QViT, an explainability-based method for assigning mixed-precision bit allocations to different layers based on their importance during classification.
Our experimental findings demonstrate that both our fixed-bit and mixed-bit post-training quantization methods surpass existing models in the context of 4-bit and 6-bit quantization.
arXiv Detail & Related papers (2024-01-20T14:53:19Z) - Pruning Self-attentions into Convolutional Layers in Single Path [89.55361659622305]
Vision Transformers (ViTs) have achieved impressive performance over various computer vision tasks.
We propose Single-Path Vision Transformer pruning (SPViT) to efficiently and automatically compress the pre-trained ViTs.
Our SPViT can trim 52.0% FLOPs for DeiT-B and get an impressive 0.6% top-1 accuracy gain simultaneously.
arXiv Detail & Related papers (2021-11-23T11:35:54Z) - Post-Training Quantization for Vision Transformer [85.57953732941101]
We present an effective post-training quantization algorithm for reducing the memory storage and computational costs of vision transformers.
We can obtain an 81.29% top-1 accuracy using DeiT-B model on ImageNet dataset with about 8-bit quantization.
arXiv Detail & Related papers (2021-06-27T06:27:22Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z) - DBQ: A Differentiable Branch Quantizer for Lightweight Deep Neural
Networks [4.358626952482686]
We present a novel non-uniform quantizer that can be seamlessly mapped onto efficient ternary-based dot product engines.
The proposed quantizer (DBQ) successfully tackles the daunting task of aggressively quantizing lightweight networks such as MobileNetV1, MobileNetV2, and ShuffleNetV2.
DBQ achieves state-of-the art results with minimal training overhead and provides the best (pareto-optimal) accuracy-complexity trade-off.
arXiv Detail & Related papers (2020-07-19T23:50:09Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.