Survey of Quantization Techniques for On-Device Vision-based Crack Detection
- URL: http://arxiv.org/abs/2502.02269v1
- Date: Tue, 04 Feb 2025 12:29:29 GMT
- Title: Survey of Quantization Techniques for On-Device Vision-based Crack Detection
- Authors: Yuxuan Zhang, Luciano Sebastian Martinez-Rau, Quynh Nguyen Phuong Vu, Bengt Oelmann, Sebastian Bader,
- Abstract summary: Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure.<n>Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods.<n>This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5.
- Score: 5.967661928760498
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure by enabling timely damage detection. Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods but requires the deployment of efficient deep learning models on resource-constrained devices. This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5, across TensorFlow, PyTorch, and Open Neural Network Exchange platforms using three quantization techniques: dynamic quantization, post-training quantization (PTQ), and quantization-aware training (QAT). Results show that QAT consistently achieves near-floating-point accuracy, such as an F1-score of 0.8376 for MBNV2x0.5 with Torch-QAT, while maintaining efficient resource usage. PTQ significantly reduces memory and energy consumption but suffers from accuracy loss, particularly in TensorFlow. Dynamic quantization preserves accuracy but faces deployment challenges on PyTorch. By leveraging QAT, this work enables real-time, low-power crack detection on UAVs, enhancing safety, scalability, and cost-efficiency in SHM applications, while providing insights into balancing accuracy and efficiency across different platforms for autonomous inspections.
Related papers
- QSViT: A Methodology for Quantizing Spiking Vision Transformers [5.343921650701002]
Vision Transformer (ViT)-based models have shown state-of-the-art performance (e.g., accuracy) in vision-based AI tasks.
However, realizing their capability in resource-constrained embedded AI systems is challenging due to their inherent large memory footprints.
We propose QSViT, a novel design methodology to compress the SViT models through a systematic quantization strategy.
arXiv Detail & Related papers (2025-04-01T16:34:46Z) - Optimizing Low-Energy Carbon IIoT Systems with Quantum Algorithms: Performance Evaluation and Noise Robustness [22.867189884561768]
Low-energy carbon Internet of Things (IoT) systems are essential for sustainable development.
We introduce three quantum algorithms: quantum neural networks utilizing Pennylane (QNN-P), Qiskit (QNN-Q) and hybrid quantum neural networks (QNN-H)
For the RODD dataset, QNN-P achieved the highest accuracy at 0.95, followed by QNN-H at 0.91 and QNN-Q at 0.80. Similarly, for the GPSD dataset, QNN-P attained an accuracy of 0.94, QNN-H 0.87, and QNN-Q 0.74
arXiv Detail & Related papers (2025-03-02T13:13:11Z) - Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection [3.2927352068925444]
deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
arXiv Detail & Related papers (2024-10-11T20:52:10Z) - Validating Large-Scale Quantum Machine Learning: Efficient Simulation of Quantum Support Vector Machines Using Tensor Networks [17.80970950814512]
We present an efficient tensor-network-based approach for simulating large-scale quantum circuits.<n>Our simulator successfully handles QSVMs with up to 784 qubits, completing simulations within seconds on a single high-performance GPU.
arXiv Detail & Related papers (2024-05-04T10:37:01Z) - SQUAT: Stateful Quantization-Aware Training in Recurrent Spiking Neural Networks [1.0923877073891446]
Spiking neural networks (SNNs) share the goal of enhancing efficiency, but adopt an 'event-driven' approach to reduce the power consumption of neural network inference.
This paper introduces two QAT schemes for stateful neurons: (i) a uniform quantization strategy, an established method for weight quantization, and (ii) threshold-centered quantization.
Our results show that increasing the density of quantization levels around the firing threshold improves accuracy across several benchmark datasets.
arXiv Detail & Related papers (2024-04-15T03:07:16Z) - Low-power event-based face detection with asynchronous neuromorphic
hardware [2.0774873363739985]
We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip.
We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference.
We achieve an on-chip face detection mAP[0.5] of 0.6 while consuming only 20 mW.
arXiv Detail & Related papers (2023-12-21T19:23:02Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
The finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format.
The proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm.
arXiv Detail & Related papers (2022-07-19T16:37:24Z) - Neural Network Quantization with AI Model Efficiency Toolkit (AIMET) [15.439669159557253]
We present an overview of neural network quantization using AI Model Efficiency Toolkit (AIMET)
AIMET is a library of state-of-the-art quantization and compression algorithms designed to ease the effort required for model optimization.
We provide a practical guide to quantization via AIMET by covering PTQ and QAT, code examples and practical tips.
arXiv Detail & Related papers (2022-01-20T20:35:37Z) - On the Tradeoff between Energy, Precision, and Accuracy in Federated
Quantized Neural Networks [68.52621234990728]
Federated learning (FL) over wireless networks requires balancing between accuracy, energy efficiency, and precision.
We propose a quantized FL framework that represents data with a finite level of precision in both local training and uplink transmission.
Our framework can reduce energy consumption by up to 53% compared to a standard FL model.
arXiv Detail & Related papers (2021-11-15T17:00:03Z) - A Statistical Framework for Low-bitwidth Training of Deep Neural
Networks [70.77754244060384]
Fully quantized training (FQT) uses low-bitwidth hardware by quantizing the activations, weights, and gradients of a neural network model.
One major challenge with FQT is the lack of theoretical understanding, in particular of how gradient quantization impacts convergence properties.
arXiv Detail & Related papers (2020-10-27T13:57:33Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
We present APQ for efficient deep learning inference on resource-constrained hardware.
Unlike previous methods that separately search the neural architecture, pruning policy, and quantization policy, we optimize them in a joint manner.
With the same accuracy, APQ reduces the latency/energy by 2x/1.3x over MobileNetV2+HAQ.
arXiv Detail & Related papers (2020-06-15T16:09:17Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.