Mesh Compression with Quantized Neural Displacement Fields
- URL: http://arxiv.org/abs/2504.01027v1
- Date: Fri, 28 Mar 2025 13:35:32 GMT
- Title: Mesh Compression with Quantized Neural Displacement Fields
- Authors: Sai Karthikey Pentapati, Gregoire Phillips, Alan C. Bovik,
- Abstract summary: Implicit neural representations (INRs) have been successfully used to compress a variety of 3D surface representations.<n>This work presents a simple yet effective method that extends the usage of INRs to compress 3D triangle meshes.<n>We show that our method is capable of preserving intricate geometric textures and demonstrates state-of-the-art performance for compression ratios ranging from 4x to 380x.
- Score: 31.316999947745614
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Implicit neural representations (INRs) have been successfully used to compress a variety of 3D surface representations such as Signed Distance Functions (SDFs), voxel grids, and also other forms of structured data such as images, videos, and audio. However, these methods have been limited in their application to unstructured data such as 3D meshes and point clouds. This work presents a simple yet effective method that extends the usage of INRs to compress 3D triangle meshes. Our method encodes a displacement field that refines the coarse version of the 3D mesh surface to be compressed using a small neural network. Once trained, the neural network weights occupy much lower memory than the displacement field or the original surface. We show that our method is capable of preserving intricate geometric textures and demonstrates state-of-the-art performance for compression ratios ranging from 4x to 380x.
Related papers
- NeuralGS: Bridging Neural Fields and 3D Gaussian Splatting for Compact 3D Representations [39.343445598839125]
3DGS demonstrates superior quality and rendering speed, but with millions of 3D Gaussians and significant storage and transmission costs.<n>Recent 3DGS compression methods mainly concentrate on compressing Scaffold-GS, achieving impressive performance but with an additional voxel structure and a complex encoding and quantization strategy.<n>In this paper, we aim to develop a simple yet effective method called SplatGS that explores in another way to compress the original 3DGS into a compact representation without the voxel structure and complex quantization strategies.
arXiv Detail & Related papers (2025-03-29T17:36:53Z) - Optimizing 3D Geometry Reconstruction from Implicit Neural Representations [2.3940819037450987]
Implicit neural representations have emerged as a powerful tool in learning 3D geometry.
We present a novel approach that both reduces computational expenses and enhances the capture of fine details.
arXiv Detail & Related papers (2024-10-16T16:36:23Z) - Ultron: Enabling Temporal Geometry Compression of 3D Mesh Sequences using Temporal Correspondence and Mesh Deformation [2.0914328542137346]
Existing 3D model compression methods primarily focus on static models and do not consider inter-frame information.
This paper proposes a method to compress mesh sequences with arbitrary topology using temporal correspondence and mesh deformation.
arXiv Detail & Related papers (2024-09-08T16:34:19Z) - N-BVH: Neural ray queries with bounding volume hierarchies [51.430495562430565]
In 3D computer graphics, the bulk of a scene's memory usage is due to polygons and textures.
We devise N-BVH, a neural compression architecture designed to answer arbitrary ray queries in 3D.
Our method provides faithful approximations of visibility, depth, and appearance attributes.
arXiv Detail & Related papers (2024-05-25T13:54:34Z) - SAGS: Structure-Aware 3D Gaussian Splatting [53.6730827668389]
We propose a structure-aware Gaussian Splatting method (SAGS) that implicitly encodes the geometry of the scene.
SAGS reflects to state-of-the-art rendering performance and reduced storage requirements on benchmark novel-view synthesis datasets.
arXiv Detail & Related papers (2024-04-29T23:26:30Z) - 3D Compression Using Neural Fields [90.24458390334203]
We propose a novel NF-based compression algorithm for 3D data.
We demonstrate that our method excels at geometry compression on 3D point clouds as well as meshes.
It is straightforward to extend our compression algorithm to compress both geometry and attribute (e.g. color) of 3D data.
arXiv Detail & Related papers (2023-11-21T21:36:09Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.