Carbon Footprint Evaluation of Code Generation through LLM as a Service
- URL: http://arxiv.org/abs/2504.01036v1
- Date: Sun, 30 Mar 2025 15:27:04 GMT
- Title: Carbon Footprint Evaluation of Code Generation through LLM as a Service
- Authors: Tina Vartziotis, Maximilian Schmidt, George Dasoulas, Ippolyti Dellatolas, Stefano Attademo, Viet Dung Le, Anke Wiechmann, Tim Hoffmann, Michael Keckeisen, Sotirios Kotsopoulos,
- Abstract summary: Green coding and claims that AI models can improve energy efficiency have grown in popularity.<n>We present an overview of green coding and metrics to measure AI model sustainability awareness.
- Score: 5.782162597806532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to increased computing use, data centers consume and emit a lot of energy and carbon. These contributions are expected to rise as big data analytics, digitization, and large AI models grow and become major components of daily working routines. To reduce the environmental impact of software development, green (sustainable) coding and claims that AI models can improve energy efficiency have grown in popularity. Furthermore, in the automotive industry, where software increasingly governs vehicle performance, safety, and user experience, the principles of green coding and AI-driven efficiency could significantly contribute to reducing the sector's environmental footprint. We present an overview of green coding and metrics to measure AI model sustainability awareness. This study introduces LLM as a service and uses a generative commercial AI language model, GitHub Copilot, to auto-generate code. Using sustainability metrics to quantify these AI models' sustainability awareness, we define the code's embodied and operational carbon.
Related papers
- Prompt engineering and its implications on the energy consumption of Large Language Models [4.791072577881446]
Large language models (LLMs) in software engineering pose severe challenges regarding computational resources, data centers, and carbon emissions.<n>In this paper, we investigate how prompt engineering techniques (PETs) can impact the carbon emission of the Llama 3 model for the code generation task.
arXiv Detail & Related papers (2025-01-10T11:49:31Z) - Green My LLM: Studying the key factors affecting the energy consumption of code assistants [1.747820331822631]
This paper investigates the energy consumption of large language models-based code assistants such as GitHub Copilot.
Our findings reveal that the energy consumption and performance of code assistants are influenced by various factors, such as the number of concurrent developers.
arXiv Detail & Related papers (2024-11-07T16:00:29Z) - Generative AI for Low-Carbon Artificial Intelligence of Things with Large Language Models [67.0243099823109]
Generative AI (GAI) holds immense potential to reduce carbon emissions of Artificial Intelligence of Things (AIoT)
In this article, we explore the potential of GAI for carbon emissions reduction and propose a novel GAI-enabled solution for low-carbon AIoT.
We propose a Large Language Model (LLM)-enabled carbon emission optimization framework, in which we design pluggable LLM and Retrieval Augmented Generation (RAG) modules.
arXiv Detail & Related papers (2024-04-28T05:46:28Z) - Learn to Code Sustainably: An Empirical Study on LLM-based Green Code
Generation [7.8273713434806345]
We evaluate the sustainability of auto-generate codes produced by generative commercial AI language models.
We compare the performance and green capacity of human-generated code and code generated by the three AI language models.
arXiv Detail & Related papers (2024-03-05T22:12:01Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z) - Eco2AI: carbon emissions tracking of machine learning models as the
first step towards sustainable AI [47.130004596434816]
In eco2AI we put emphasis on accuracy of energy consumption tracking and correct regional CO2 emissions accounting.
The motivation also comes from the concept of AI-based green house gases sequestrating cycle with both Sustainable AI and Green AI pathways.
arXiv Detail & Related papers (2022-07-31T09:34:53Z) - Measuring the Carbon Intensity of AI in Cloud Instances [91.28501520271972]
We provide a framework for measuring software carbon intensity, and propose to measure operational carbon emissions.
We evaluate a suite of approaches for reducing emissions on the Microsoft Azure cloud compute platform.
arXiv Detail & Related papers (2022-06-10T17:04:04Z) - Towards Green Automated Machine Learning: Status Quo and Future
Directions [71.86820260846369]
AutoML is being criticised for its high resource consumption.
This paper proposes Green AutoML, a paradigm to make the whole AutoML process more environmentally friendly.
arXiv Detail & Related papers (2021-11-10T18:57:27Z) - Sustainable AI: Environmental Implications, Challenges and Opportunities [13.089123643565724]
We characterize the carbon footprint of AI computing by examining the model development cycle across industry-scale machine learning use cases.
We present an end-to-end analysis for what and how hardware-software design and at-scale optimization can help reduce the overall carbon footprint of AI.
arXiv Detail & Related papers (2021-10-30T23:36:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.