Green My LLM: Studying the key factors affecting the energy consumption of code assistants
- URL: http://arxiv.org/abs/2411.11892v1
- Date: Thu, 07 Nov 2024 16:00:29 GMT
- Title: Green My LLM: Studying the key factors affecting the energy consumption of code assistants
- Authors: Tristan Coignion, Clément Quinton, Romain Rouvoy,
- Abstract summary: This paper investigates the energy consumption of large language models-based code assistants such as GitHub Copilot.
Our findings reveal that the energy consumption and performance of code assistants are influenced by various factors, such as the number of concurrent developers.
- Score: 1.747820331822631
- License:
- Abstract: In recent years,Large Language Models (LLMs) have significantly improved in generating high-quality code, enabling their integration into developers' Integrated Development Environments (IDEs) as code assistants. These assistants, such as GitHub Copilot, deliver real-time code suggestions and can greatly enhance developers' productivity. However, the environmental impact of these tools, in particular their energy consumption, remains a key concern. This paper investigates the energy consumption of LLM-based code assistants by simulating developer interactions with GitHub Copilot and analyzing various configuration factors. We collected a dataset of development traces from 20 developers and conducted extensive software project development simulations to measure energy usage under different scenarios. Our findings reveal that the energy consumption and performance of code assistants are influenced by various factors, such as the number of concurrent developers, model size, quantization methods, and the use of streaming. Notably, a substantial portion of generation requests made by GitHub Copilot is either canceled or rejected by developers, indicating a potential area for reducing wasted computations. Based on these findings, we share actionable insights into optimizing configurations for different use cases, demonstrating that careful adjustments can lead to significant energy savings.
Related papers
- Prompt engineering and its implications on the energy consumption of Large Language Models [4.791072577881446]
Large language models (LLMs) in software engineering pose severe challenges regarding computational resources, data centers, and carbon emissions.
In this paper, we investigate how prompt engineering techniques (PETs) can impact the carbon emission of the Llama 3 model for the code generation task.
arXiv Detail & Related papers (2025-01-10T11:49:31Z) - Darkit: A User-Friendly Software Toolkit for Spiking Large Language Model [50.37090759139591]
Large language models (LLMs) have been widely applied in various practical applications, typically comprising billions of parameters.
The human brain, employing bio-plausible spiking mechanisms, can accomplish the same tasks while significantly reducing energy consumption.
We are releasing a software toolkit named DarwinKit (Darkit) to accelerate the adoption of brain-inspired large language models.
arXiv Detail & Related papers (2024-12-20T07:50:08Z) - CPPJoules: An Energy Measurement Tool for C++ [3.9373541926236766]
CPPJoules is a tool built on top of Intel-RAPL to measure the energy consumption of C++ code snippets.
We have evaluated the tool by measuring the energy consumption of the standard computational tasks from the Rosetta Code repository.
arXiv Detail & Related papers (2024-12-18T07:11:56Z) - Codev-Bench: How Do LLMs Understand Developer-Centric Code Completion? [60.84912551069379]
We present the Code-Development Benchmark (Codev-Bench), a fine-grained, real-world, repository-level, and developer-centric evaluation framework.
Codev-Agent is an agent-based system that automates repository crawling, constructs execution environments, extracts dynamic calling chains from existing unit tests, and generates new test samples to avoid data leakage.
arXiv Detail & Related papers (2024-10-02T09:11:10Z) - Transforming Software Development: Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects [0.0]
GitHub Copilot is an AI-powered coding assistant.
This study evaluates the efficiency gains, areas for improvement, and emerging challenges of using GitHub Copilot.
arXiv Detail & Related papers (2024-06-25T19:51:21Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - A Study on Developer Behaviors for Validating and Repairing LLM-Generated Code Using Eye Tracking and IDE Actions [13.58143103712]
GitHub Copilot is a large language model (LLM)-powered code generation tool.
This paper investigates how developers validate and repair code generated by Copilot.
Being aware of the code's provenance led to improved performance, increased search efforts, more frequent Copilot usage, and higher cognitive workload.
arXiv Detail & Related papers (2024-05-25T06:20:01Z) - Learn to Code Sustainably: An Empirical Study on LLM-based Green Code
Generation [7.8273713434806345]
We evaluate the sustainability of auto-generate codes produced by generative commercial AI language models.
We compare the performance and green capacity of human-generated code and code generated by the three AI language models.
arXiv Detail & Related papers (2024-03-05T22:12:01Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNa is an open-source software development assistant.
It generates high-quality instruction-based data for the domain of software engineering.
It employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA.
arXiv Detail & Related papers (2023-08-25T14:56:21Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - Energy Aware Deep Reinforcement Learning Scheduling for Sensors
Correlated in Time and Space [62.39318039798564]
We propose a scheduling mechanism capable of taking advantage of correlated information.
The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates.
We show that our solution can significantly extend the sensors' lifetime.
arXiv Detail & Related papers (2020-11-19T09:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.