論文の概要: TaMPERing with Large Language Models: A Field Guide for using Generative AI in Public Administration Research
- arxiv url: http://arxiv.org/abs/2504.01037v1
- Date: Sun, 30 Mar 2025 21:38:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 19:59:19.116884
- Title: TaMPERing with Large Language Models: A Field Guide for using Generative AI in Public Administration Research
- Title(参考訳): TaMPERing with Large Language Models: A Field Guide for Using Generative AI in Public Administration Research
- Authors: Michael Overton, Barrie Robison, Lucas Sheneman,
- Abstract要約: 大規模言語モデル(LLM)の社会科学研究への統合は、科学的調査を進めるための変革的な機会を提示する。
この原稿では、タスク、モデル、プロンプト、評価、レポートの5つの決定ポイントに基づいて構成された、TaMPERフレームワークの方法論を紹介します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The integration of Large Language Models (LLMs) into social science research presents transformative opportunities for advancing scientific inquiry, particularly in public administration (PA). However, the absence of standardized methodologies for using LLMs poses significant challenges for ensuring transparency, reproducibility, and replicability. This manuscript introduces the TaMPER framework-a structured methodology organized around five critical decision points: Task, Model, Prompt, Evaluation, and Reporting. The TaMPER framework provides scholars with a systematic approach to leveraging LLMs effectively while addressing key challenges such as model variability, prompt design, evaluation protocols, and transparent reporting practices.
- Abstract(参考訳): 大規模言語モデル(LLM)の社会科学研究への統合は、特に行政(PA)において、科学的調査を進めるための変革的な機会を提示する。
しかし、LCMの標準化手法が欠如していることは、透明性、再現性、複製性を確保する上で大きな課題となっている。
この原稿では、タスク、モデル、プロンプト、評価、レポートの5つの決定ポイントに基づいて構成された、TaMPERフレームワークの方法論を紹介します。
TaMPERフレームワークは、モデル変数、迅速な設計、評価プロトコル、透過的な報告プラクティスといった重要な課題に対処しながら、LLMを効果的に活用するための体系的なアプローチを提供する。
関連論文リスト
- MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model [54.14155564592936]
大規模言語モデル(MoRE-LLM)によるルールエキスパートの混合を提案する。
MoRE-LLMは、トレーニング中の局所的なルールベースのサロゲートの発見と、それらの分類タスクの利用を操縦する。
LLMはルールを修正・コンテキスト化することで、ルールのドメイン知識の整合性を高める役割を担います。
論文 参考訳(メタデータ) (2025-03-26T11:09:21Z) - A Survey on Post-training of Large Language Models [185.51013463503946]
大規模言語モデル(LLM)は、自然言語処理を根本的に変革し、会話システムから科学的探索まで、さまざまな領域で欠かせないものにしている。
これらの課題は、制限された推論能力、倫理的不確実性、最適なドメイン固有のパフォーマンスといった欠点に対処するために、先進的な訓練後言語モデル(PoLM)を必要とする。
本稿では,5つのコアパラダイムにまたがるPoLMの進化を体系的に追跡する,最初の包括的調査について述べる。
論文 参考訳(メタデータ) (2025-03-08T05:41:42Z) - An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - A Survey on Mechanistic Interpretability for Multi-Modal Foundation Models [74.48084001058672]
基礎モデルの台頭は機械学習の研究に変化をもたらした。
マルチモーダル・ファンデーション・モデル(MMFM)は、ユニモーダル・フレームワークを超えて、ユニークな解釈可能性の課題を提起する。
本研究は,(1)多モーダルモデルへのLLM解釈可能性法の適応,(2)単モーダル言語モデルとクロスモーダルシステムとの機械的差異の理解の2つの重要な側面について考察する。
論文 参考訳(メタデータ) (2025-02-22T20:55:26Z) - Bridging the Evaluation Gap: Leveraging Large Language Models for Topic Model Evaluation [0.0]
本研究では,Large Language Models (LLMs) を用いた科学文献における動的に進化するトピックの自動評価のための枠組みを提案する。
提案手法は,専門家のアノテータや狭義の統計指標に大きく依存することなく,コヒーレンス,反復性,多様性,トピック文書のアライメントといった重要な品質次元を測定するためにLLMを利用する。
論文 参考訳(メタデータ) (2025-02-11T08:23:56Z) - The ELEVATE-AI LLMs Framework: An Evaluation Framework for Use of Large Language Models in HEOR: an ISPOR Working Group Report [12.204470166456561]
この記事では、ELEVATE AI LLMsフレームワークとチェックリストを紹介します。
このフレームワークは、モデル特性、正確性、包括性、公平性を含む10の評価領域から構成される。
体系的な文献レビューと健康経済モデルの研究の枠組みとチェックリストの検証は、レポートの強さとギャップを識別する能力を強調した。
論文 参考訳(メタデータ) (2024-12-23T14:09:10Z) - From Human Annotation to LLMs: SILICON Annotation Workflow for Management Research [13.818244562506138]
LLM(Large Language Models)は、人間のアノテーションに対する費用対効果と効率的な代替手段を提供する。
本稿では、SILICON (Systematic Inference with LLMs for Information Classification and Notation) ワークフローを紹介する。
このワークフローは、人間のアノテーションの確立した原則と、体系的な迅速な最適化とモデル選択を統合している。
論文 参考訳(メタデータ) (2024-12-19T02:21:41Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
テキストエンボディの世界における6つの代表的具体的タスクを特徴とする多目的・シミュレーション不要なテストベッドであるLangSuitEを紹介する。
以前のLLMベースのテストベッドと比較すると、LangSuitEは複数のシミュレーションエンジンを使わずに、多様な環境への適応性を提供する。
具体化された状態の履歴情報を要約した新しいチェーン・オブ・ソート(CoT)スキーマであるEmMemを考案する。
論文 参考訳(メタデータ) (2024-06-24T03:36:29Z) - Leveraging Large Language Models for Entity Matching [0.0]
本稿では,大規模言語モデル(LLM)のエンティティマッチング(EM)への応用について検討する。
LLMは、高度なセマンティック理解とコンテキスト能力を活用して、EMにトランスフォーメーションポテンシャルを提供する。
我々は,弱い監督と教師なしのアプローチをEMに適用する関連研究をレビューし,LLMがこれらの手法をどのように拡張できるかを強調した。
論文 参考訳(メタデータ) (2024-05-31T05:22:07Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adapt adjust of language model based on specific downstream task。
提案手法は,様々なバックボーンやベンチマーク上での最先端性能を実証し,最小限の忘れを伴い,フルセットおよび少数ショットのシナリオにおいて効果的な連続学習を実現する。
論文 参考訳(メタデータ) (2024-04-11T04:22:15Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - From Understanding to Utilization: A Survey on Explainability for Large
Language Models [27.295767173801426]
この調査は、Large Language Models (LLMs) における説明可能性の向上を示唆している。
主に、トレーニング済みの Transformer ベースの LLM に重点を置いています。
説明可能性の活用を考える際に、モデル編集、制御生成、モデル拡張に集中するいくつかの魅力的な方法を検討する。
論文 参考訳(メタデータ) (2024-01-23T16:09:53Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
既成のLarge Language Models (LLM) の推論能力を高めるため, 単純で汎用的で効果的なプロンプト手法であるRe2を導入する。
CoT (Chain-of-Thought) など、ほとんどの思考を刺激する手法とは異なり、Re2 は質問を2回処理することで入力に焦点を移し、理解プロセスを強化する。
提案手法の有効性と汎用性を検証するため,14のデータセットにまたがる広範囲な推論ベンチマークでRe2を評価した。
論文 参考訳(メタデータ) (2023-09-12T14:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。