Active Learning Design: Modeling Force Output for Axisymmetric Soft Pneumatic Actuators
- URL: http://arxiv.org/abs/2504.01156v1
- Date: Tue, 01 Apr 2025 19:43:00 GMT
- Title: Active Learning Design: Modeling Force Output for Axisymmetric Soft Pneumatic Actuators
- Authors: Gregory M. Campbell, Gentian Muhaxheri, Leonardo Ferreira Guilhoto, Christian D. Santangelo, Paris Perdikaris, James Pikul, Mark Yim,
- Abstract summary: Soft pneumatic actuators (SPA) made from elastomeric materials can provide large strain and large force.<n>We model force-pressure-height relationships for a concentrically strain-limited class of soft pneumatic actuators.<n>We show that this learned material model outperforms the theory-based model and naive curve-fitting approaches.
- Score: 10.184372801256835
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Soft pneumatic actuators (SPA) made from elastomeric materials can provide large strain and large force. The behavior of locally strain-restricted hyperelastic materials under inflation has been investigated thoroughly for shape reconfiguration, but requires further investigation for trajectories involving external force. In this work we model force-pressure-height relationships for a concentrically strain-limited class of soft pneumatic actuators and demonstrate the use of this model to design SPA response for object lifting. We predict relationships under different loadings by solving energy minimization equations and verify this theory by using an automated test rig to collect rich data for n=22 Ecoflex 00-30 membranes. We collect this data using an active learning pipeline to efficiently model the design space. We show that this learned material model outperforms the theory-based model and naive curve-fitting approaches. We use our model to optimize membrane design for different lift tasks and compare this performance to other designs. These contributions represent a step towards understanding the natural response for this class of actuator and embodying intelligent lifts in a single-pressure input actuator system.
Related papers
- Efficient dynamic modal load reconstruction using physics-informed Gaussian processes based on frequency-sparse Fourier basis functions [0.0]
This paper presents an efficient dynamic load reconstruction method using physics-informed Gaussian processes (GP)<n>The GP's covariance matrices are built using the description of the system dynamics, and the model is trained using structural response measurements.<n>The developed model holds potential for applications in structural health monitoring, damage prognosis, and load model validation.
arXiv Detail & Related papers (2025-03-12T14:16:27Z) - GausSim: Foreseeing Reality by Gaussian Simulator for Elastic Objects [55.02281855589641]
GausSim is a novel neural network-based simulator designed to capture the dynamic behaviors of real-world elastic objects represented through Gaussian kernels.
We leverage continuum mechanics and treat each kernel as a Center of Mass System (CMS) that represents continuous piece of matter.
In addition, GausSim incorporates explicit physics constraints, such as mass and momentum conservation, ensuring interpretable results and robust, physically plausible simulations.
arXiv Detail & Related papers (2024-12-23T18:58:17Z) - Re-Dock: Towards Flexible and Realistic Molecular Docking with Diffusion
Bridge [69.80471117520719]
Re-Dock is a novel diffusion bridge generative model extended to geometric manifold.
We propose energy-to-geometry mapping inspired by the Newton-Euler equation to co-model the binding energy and conformations.
Experiments on designed benchmark datasets including apo-dock and cross-dock demonstrate our model's superior effectiveness and efficiency over current methods.
arXiv Detail & Related papers (2024-02-18T05:04:50Z) - Use of Deep Neural Networks for Uncertain Stress Functions with
Extensions to Impact Mechanics [9.73713941604395]
We propose a deep neural network approach to model stress as a state function with quantile regression to capture uncertainty.
We extend these models to uniaxial impact mechanics using differential equations to demonstrate a use case and provide a framework for implementing this uncertainty-aware stress function.
arXiv Detail & Related papers (2023-11-03T00:12:24Z) - Deep learning modelling of manufacturing and build variations on multi-stage axial compressors aerodynamics [0.0]
This paper demonstrates the development and application of a deep learning framework for predictions of the flow field and aerodynamic performance of multistage axial compressors.<n>A physics-based dimensionality reduction approach unlocks the potential for flow-field predictions.<n>The proposed architecture is proven to achieve an accuracy comparable to that of the CFD benchmark, in real-time, for an industrially relevant application.
arXiv Detail & Related papers (2023-10-06T14:11:21Z) - Exploring Model Transferability through the Lens of Potential Energy [78.60851825944212]
Transfer learning has become crucial in computer vision tasks due to the vast availability of pre-trained deep learning models.
Existing methods for measuring the transferability of pre-trained models rely on statistical correlations between encoded static features and task labels.
We present an insightful physics-inspired approach named PED to address these challenges.
arXiv Detail & Related papers (2023-08-29T07:15:57Z) - A physics-informed machine learning model for reconstruction of dynamic
loads [0.0]
This paper presents a physics-informed machine-learning framework for reconstructing dynamic forces based on measured deflections, velocities, or accelerations.
The framework can work with incomplete and contaminated data and offers a natural regularization approach to account for noise measurement system.
Uses of the developed framework include design models and assumptions, as well as prognosis of responses to assist in damage detection and health monitoring.
arXiv Detail & Related papers (2023-08-15T18:33:58Z) - Learning physics-informed simulation models for soft robotic
manipulation: A case study with dielectric elastomer actuators [21.349079159359746]
Soft actuators offer a safe and adaptable approach to robotic tasks like gentle grasping and dexterous movement.
Creating accurate models to control such systems is challenging due to the complex physics of deformable materials.
This paper presents a framework that combines the advantages of differentiable simulator and Finite Element Method.
arXiv Detail & Related papers (2022-02-25T21:15:05Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Learning Discrete Energy-based Models via Auxiliary-variable Local
Exploration [130.89746032163106]
We propose ALOE, a new algorithm for learning conditional and unconditional EBMs for discrete structured data.
We show that the energy function and sampler can be trained efficiently via a new variational form of power iteration.
We present an energy model guided fuzzer for software testing that achieves comparable performance to well engineered fuzzing engines like libfuzzer.
arXiv Detail & Related papers (2020-11-10T19:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.