PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image Classification
- URL: http://arxiv.org/abs/2504.01214v1
- Date: Tue, 01 Apr 2025 22:05:00 GMT
- Title: PolygoNet: Leveraging Simplified Polygonal Representation for Effective Image Classification
- Authors: Salim Khazem, Jeremy Fix, Cédric Pradalier,
- Abstract summary: We propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates.<n>Our method significantly reduces computational requirements, accelerates training, and conserves resources.<n>Experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications.
- Score: 6.3286311412189304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have achieved significant success in various image related tasks. However, they often encounter challenges related to computational complexity and overfitting. In this paper, we propose an efficient approach that leverages polygonal representations of images using dominant points or contour coordinates. By transforming input images into these compact forms, our method significantly reduces computational requirements, accelerates training, and conserves resources making it suitable for real time and resource constrained applications. These representations inherently capture essential image features while filtering noise, providing a natural regularization effect that mitigates overfitting. The resulting lightweight models achieve performance comparable to state of the art methods using full resolution images while enabling deployment on edge devices. Extensive experiments on benchmark datasets validate the effectiveness of our approach in reducing complexity, improving generalization, and facilitating edge computing applications. This work demonstrates the potential of polygonal representations in advancing efficient and scalable deep learning solutions for real world scenarios. The code for the experiments of the paper is provided in https://github.com/salimkhazem/PolygoNet.
Related papers
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Efficient Visual State Space Model for Image Deblurring [83.57239834238035]
Convolutional neural networks (CNNs) and Vision Transformers (ViTs) have achieved excellent performance in image restoration.
We propose a simple yet effective visual state space model (EVSSM) for image deblurring.
arXiv Detail & Related papers (2024-05-23T09:13:36Z) - One-Shot Image Restoration [0.0]
Experimental results demonstrate the applicability, robustness and computational efficiency of the proposed approach for supervised image deblurring and super-resolution.
Our results showcase significant improvement of learning models' sample efficiency, generalization and time complexity.
arXiv Detail & Related papers (2024-04-26T14:03:23Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
We propose a new architecture that relies on Distance-based Weighted Transformer (DWT) to better understand the relationships between an image's components.
CNNs are used to augment the local texture information of coarse priors.
DWT blocks are used to recover certain coarse textures and coherent visual structures.
arXiv Detail & Related papers (2023-10-11T12:46:11Z) - Pixel-Inconsistency Modeling for Image Manipulation Localization [59.968362815126326]
Digital image forensics plays a crucial role in image authentication and manipulation localization.
This paper presents a generalized and robust manipulation localization model through the analysis of pixel inconsistency artifacts.
Experiments show that our method successfully extracts inherent pixel-inconsistency forgery fingerprints.
arXiv Detail & Related papers (2023-09-30T02:54:51Z) - TopicFM+: Boosting Accuracy and Efficiency of Topic-Assisted Feature
Matching [8.314830611853168]
This study tackles the challenge of image matching in difficult scenarios, such as scenes with significant variations or limited texture.
Previous studies have attempted to address this challenge by encoding global scene contexts using Transformers.
We propose a novel image-matching method that leverages a topic-modeling strategy to capture high-level contexts in images.
arXiv Detail & Related papers (2023-07-02T06:14:07Z) - A Novel Algorithm for Exact Concave Hull Extraction [0.0]
Region extraction is necessary in a wide range of applications, from object detection in autonomous driving to analysis of subcellular morphology in cell biology.
There exist two main approaches: convex hull extraction, for which exact and efficient algorithms exist and concave hulls, which are better at capturing real-world shapes but do not have a single solution.
In this study, we present a novel algorithm that can provide concave hulls with maximal (i.e. pixel-perfect) resolution and is tunable for speed-efficiency tradeoffs.
arXiv Detail & Related papers (2022-06-23T05:26:48Z) - Efficient Textured Mesh Recovery from Multiple Views with Differentiable
Rendering [8.264851594332677]
We propose an efficient coarse-to-fine approach to recover the textured mesh from multi-view images.
We optimize the shape geometry by minimizing the difference between the rendered mesh with the depth predicted by the learning-based multi-view stereo algorithm.
In contrast to the implicit neural representation on shape and color, we introduce a physically based inverse rendering scheme to jointly estimate the lighting and reflectance of the objects.
arXiv Detail & Related papers (2022-05-25T03:33:55Z) - SDWNet: A Straight Dilated Network with Wavelet Transformation for Image
Deblurring [23.86692375792203]
Image deblurring is a computer vision problem that aims to recover a sharp image from a blurred image.
Our model uses dilated convolution to enable the obtainment of the large receptive field with high spatial resolution.
We propose a novel module using the wavelet transform, which effectively helps the network to recover clear high-frequency texture details.
arXiv Detail & Related papers (2021-10-12T07:58:10Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task.
We present a novel architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network.
Our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
arXiv Detail & Related papers (2020-03-15T11:04:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.