Highway to Hull: An Algorithm for Solving the General Matrix Code Equivalence Problem
- URL: http://arxiv.org/abs/2504.01230v1
- Date: Tue, 01 Apr 2025 22:39:31 GMT
- Title: Highway to Hull: An Algorithm for Solving the General Matrix Code Equivalence Problem
- Authors: Alain Couvreur, Christophe Levrat,
- Abstract summary: The matrix code equivalence problem consists, given two matrix spaces $mathcalC,mathcalDsubset mathbbF_qmtimes n$ of dimension $k$.<n>We present a different algorithm which solves the problem in the general case.
- Score: 4.450536872346658
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The matrix code equivalence problem consists, given two matrix spaces $\mathcal{C},\mathcal{D}\subset \mathbb{F}_q^{m\times n}$ of dimension $k$, in finding invertible matrices $P\in\mathrm{GL}_m(\mathbb{F}_q)$ and $Q\in\mathrm{GL}_n(\mathbb{F}_q)$ such that $\mathcal{D}=P\mathcal{C} Q^{-1}$. Recent signature schemes such as MEDS and ALTEQ relate their security to the hardness of this problem. Naranayan et. al. recently published an algorithm solving this problem in the case $k = n =m$ in $\widetilde{O}(q^{\frac k 2})$ operations. We present a different algorithm which solves the problem in the general case. Our approach consists in reducing the problem to the matrix code conjugacy problem, i.e. the case $P=Q$. For the latter problem, similarly to the permutation code equivalence problem in Hamming metric, a natural invariant based on the Hull of the code can be used. Next, the equivalence of codes can be deduced using a usual list collision argument. For $k=m=n$, our algorithm achieves the same complexity as in the aforementioned reference. However, it extends to a much broader range of parameters.
Related papers
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
We show that this problem has randomized communication complexity $Omega(frac1kcdot n2log|mathbbF|)$.
As an application, we obtain an $Omega(frac1kcdot n2log|mathbbF|)$ space lower bound for any streaming algorithm with $k$ passes.
arXiv Detail & Related papers (2024-10-26T06:21:42Z) - A quantum central path algorithm for linear optimization [5.450016817940232]
We propose a novel quantum algorithm for solving linear optimization problems by quantum-mechanical simulation of the central path.
This approach yields an algorithm for solving linear optimization problems involving $m$ constraints and $n$ variables to $varepsilon$-optimality.
In the standard gate model (i.e., without access to quantum RAM), our algorithm can obtain highly-precise solutions to LO problems using at most $$mathcalO left( sqrtm + n textsfnnz (A) fracR_1
arXiv Detail & Related papers (2023-11-07T13:26:20Z) - Structured Semidefinite Programming for Recovering Structured
Preconditioners [41.28701750733703]
We give an algorithm which, given positive definite $mathbfK in mathbbRd times d$ with $mathrmnnz(mathbfK)$ nonzero entries, computes an $epsilon$-optimal diagonal preconditioner in time.
We attain our results via new algorithms for a class of semidefinite programs we call matrix-dictionary approximation SDPs.
arXiv Detail & Related papers (2023-10-27T16:54:29Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - A General Algorithm for Solving Rank-one Matrix Sensing [15.543065204102714]
The goal of matrix sensing is to recover a matrix $A_star in mathbbRn times n$, based on a sequence of measurements.
In this paper, we relax that rank-$k$ assumption and solve a much more general matrix sensing problem.
arXiv Detail & Related papers (2023-03-22T04:07:26Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Global Convergence of Gradient Descent for Asymmetric Low-Rank Matrix
Factorization [49.090785356633695]
We study the asymmetric low-rank factorization problem: [mathbfU in mathbbRm min d, mathbfU$ and mathV$.
arXiv Detail & Related papers (2021-06-27T17:25:24Z) - The Fine-Grained Hardness of Sparse Linear Regression [12.83354999540079]
We show that there are no better-than-brute-force algorithms for the problem.
We also show the impossibility of better-than-brute-force algorithms when the prediction error is measured.
arXiv Detail & Related papers (2021-06-06T14:19:43Z) - Sublinear classical and quantum algorithms for general matrix games [11.339580074756189]
We investigate sublinear classical and quantum algorithms for matrix games.
For any fixed $qin (1,2), we solve the matrix game where $mathcalX$ is a $ell_q$-norm unit ball within additive error.
We also provide a corresponding sublinear quantum algorithm that solves the same task in time.
arXiv Detail & Related papers (2020-12-11T17:36:33Z) - Quantum algorithms for spectral sums [50.045011844765185]
We propose new quantum algorithms for estimating spectral sums of positive semi-definite (PSD) matrices.
We show how the algorithms and techniques used in this work can be applied to three problems in spectral graph theory.
arXiv Detail & Related papers (2020-11-12T16:29:45Z) - Tight Quantum Lower Bound for Approximate Counting with Quantum States [49.6558487240078]
We prove tight lower bounds for the following variant of the counting problem considered by Aaronson, Kothari, Kretschmer, and Thaler ( 2020)
The task is to distinguish whether an input set $xsubseteq [n]$ has size either $k$ or $k'=(1+varepsilon)k$.
arXiv Detail & Related papers (2020-02-17T10:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.