論文の概要: Prompt-Reverse Inconsistency: LLM Self-Inconsistency Beyond Generative Randomness and Prompt Paraphrasing
- arxiv url: http://arxiv.org/abs/2504.01282v1
- Date: Wed, 02 Apr 2025 01:19:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:22:42.792262
- Title: Prompt-Reverse Inconsistency: LLM Self-Inconsistency Beyond Generative Randomness and Prompt Paraphrasing
- Title(参考訳): プロンプト逆不整合:生成的ランダム性を超えた自己矛盾とプロンプトパラフレージング
- Authors: Jihyun Janice Ahn, Wenpeng Yin,
- Abstract要約: PRIN(Prompt-Reverse Inconsistency)は、自己整合性の新たな形態である。
PRINはLSM-as-a-judgeの信頼性を損なうため、大きな懸念を抱いている。
- 参考スコア(独自算出の注目度): 7.641111409453107
- License:
- Abstract: While the inconsistency of LLMs is not a novel topic, prior research has predominantly addressed two types of generative inconsistencies: i) Randomness Inconsistency: running the same LLM multiple trials, yielding varying responses; ii) Paraphrase Inconsistency: paraphrased prompts result in different responses from the same LLM. Randomness Inconsistency arises from the inherent randomness due to stochastic sampling in generative models, while Paraphrase Inconsistency is a consequence of the language modeling objectives, where paraphrased prompts alter the distribution of vocabulary logits. This research discovers Prompt-Reverse Inconsistency (PRIN), a new form of LLM self-inconsistency: given a question and a couple of LLM-generated answer candidates, the LLM often has conflicting responses when prompted "Which are correct answers?" and "Which are incorrect answers?". PRIN poses a big concern as it undermines the credibility of LLM-as-a-judge, and suggests a challenge for LLMs to adhere to basic logical rules. We conduct a series of experiments to investigate PRIN, examining the extent of PRIN across different LLMs, methods to mitigate it, potential applications, and its relationship with Randomness Inconsistency and Paraphrase Inconsistency. As the first study to explore PRIN, our findings offer valuable insights into the inner workings of LLMs and contribute to advancing trustworthy AI.
- Abstract(参考訳): LLMの不整合は、新しい話題ではないが、以前の研究は、主に2種類の生成的不整合に対処してきた。
一 ランダム性不整合:同一のLCMを複数回実施し、異なる反応を産出すること。
二 言い換え不整合:言い換えプロンプトが同一のLDMから異なる応答をもたらすこと。
ランダム性の不整合は、生成モデルにおける確率的サンプリングによる固有のランダム性から生じるが、パラフレーズ不整合は言語モデリングの目的の結果であり、パラフレーズ的プロンプトは語彙ロジットの分布を変化させる。
本研究は,LLM自己矛盾の新たな形態であるPRIN(Prompt-Reverse Inconsistency)を明らかにする。質問と2つのLLM生成回答候補が与えられた場合,LLMは「Which is correct answer?」「Which are wrong answer?
PRIN は LLM-as-a-judge の信頼性を損なうため大きな懸念を抱き、LLM が基本的な論理規則に従うことの難しさを示唆している。
我々は,PRINを調査するための一連の実験を行い,異なるLLMにわたるPRINの範囲,PRINを緩和する方法,潜在的な応用,およびランダム性不整合とパラフレーズ不整合との関係について検討する。
PRINを探索する最初の研究として、私たちの発見はLLMの内部動作に関する貴重な洞察を提供し、信頼できるAIの進歩に貢献します。
関連論文リスト
- Aligning Large Language Models for Faithful Integrity Against Opposing Argument [71.33552795870544]
大規模言語モデル(LLM)は複雑な推論タスクにおいて印象的な機能を示している。
原文が正しい場合でも、会話中に不誠実な議論によって容易に誤解される。
本稿では,信頼度と信頼度を両立させる新しい枠組みを提案する。
論文 参考訳(メタデータ) (2025-01-02T16:38:21Z) - Evaluating Consistencies in LLM responses through a Semantic Clustering of Question Answering [1.9214041945441436]
本稿では,Large Language Model (LLM) のセマンティクスを評価するための新しいアプローチを提案する。
本稿では,LLM再応答が意味論的に一致しているかどうかを考察し,構文的に異なる文が同じ意味を持つ可能性があることを認識した。
TruthfulQAデータセットを用いてLLM応答を評価することにより、37のカテゴリにわたる意味的一貫性を測定するために、質問毎にNの応答を誘導し、意味的に等価な文をクラスタ化する。
論文 参考訳(メタデータ) (2024-10-20T16:21:25Z) - Order Matters in Hallucination: Reasoning Order as Benchmark and Reflexive Prompting for Large-Language-Models [0.0]
大規模言語モデル(LLM)は、その誕生以来、様々な学術分野や産業分野にまたがって大きな注目を集めてきた。
LLMはしばしば「ハロシン化問題」に悩まされるが、出力は文法的にも論理的にも一貫性があり、事実の正確性に欠ける。
論文 参考訳(メタデータ) (2024-08-09T14:34:32Z) - Direct-Inverse Prompting: Analyzing LLMs' Discriminative Capacity in Self-Improving Generation [15.184067502284007]
もっとも先進的なLCMでさえ出力の不確実性を経験しており、異なるランニングや入力の微妙な変化に直面した時に、しばしば様々な結果を生み出す。
我々は,直接,逆,ハイブリッドの3つの識別的プロンプトを提案し,分析する。
私たちの洞察は、どの差別的プロンプトが最も有望か、いつ使うかを明らかにします。
論文 参考訳(メタデータ) (2024-06-27T02:26:47Z) - SELF-[IN]CORRECT: LLMs Struggle with Discriminating Self-Generated Responses [49.148206387394936]
モデルでは、初期応答を生成するよりも、以前に生成した代替品間での識別性が確実に向上しないことが示される。
この発見は LLM が自身の判断によってのみ性能を向上させることができるという概念に挑戦する。
論文 参考訳(メタデータ) (2024-04-04T20:27:37Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
本稿では,Rephrase and Respond'(RaR)という手法を提案する。
RaRは、パフォーマンスを改善するためのシンプルだが効果的なプロンプト方法として機能する。
また,RaRは理論的にも経験的にも,一般的なChain-of-Thought(CoT)法と相補的であることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:43:34Z) - Knowing What LLMs DO NOT Know: A Simple Yet Effective Self-Detection Method [36.24876571343749]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクにおいて大きな可能性を示している。
近年の文献では、LLMは断続的に非実効応答を生成する。
本研究では,LLM が知らない質問が非現実的な結果を生成する傾向にあることを検知する新たな自己検出手法を提案する。
論文 参考訳(メタデータ) (2023-10-27T06:22:14Z) - Assessing the Reliability of Large Language Model Knowledge [78.38870272050106]
大規模言語モデル(LLM)は、知識探索タスクにおける高い性能のため、知識ベースとして扱われてきた。
LLMが実際に正しい答えを連続的に生成する能力をどのように評価するか。
LLMの信頼性を直接測定するための新しい指標であるMOdel kNowledge relIabiliTy score (MONITOR)を提案する。
論文 参考訳(メタデータ) (2023-10-15T12:40:30Z) - Semantic Consistency for Assuring Reliability of Large Language Models [9.876355290198639]
大規模言語モデル(LLM)は、様々な自然言語タスクに対して顕著な流布と能力を示す。
セマンティック一貫性の一般的な尺度を導入し、様々なLLMの性能を評価するために、この指標の複数バージョンを定式化する。
本稿では,Ask-to-Choose (A2C) と呼ばれる新しいプロンプト戦略を提案する。
論文 参考訳(メタデータ) (2023-08-17T18:11:33Z) - RCOT: Detecting and Rectifying Factual Inconsistency in Reasoning by
Reversing Chain-of-Thought [56.558892336235914]
Reversing Chain-of-Thought (RCoT) は、大規模言語モデルの推論能力を改善する新しい手法である。
RCoTは生成したソリューションにおける事実の不整合を自動的に検出し、修正する。
手書きのきめ細かいフィードバックがLLMの推論能力を大幅に向上させることを示す。
論文 参考訳(メタデータ) (2023-05-19T08:02:52Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。