Direction-Aware Hybrid Representation Learning for 3D Hand Pose and Shape Estimation
- URL: http://arxiv.org/abs/2504.01298v2
- Date: Thu, 03 Apr 2025 07:52:59 GMT
- Title: Direction-Aware Hybrid Representation Learning for 3D Hand Pose and Shape Estimation
- Authors: Shiyong Liu, Zhihao Li, Xiao Tang, Jianzhuang Liu,
- Abstract summary: We propose learning direction-aware hybrid features (DaHyF) that fuse implicit image features and explicit 2D joint coordinate features.<n>Our method directly predicts 3D hand poses with DaHyF representation and reduces jittering during motion capture using prediction confidence based on contrastive learning.
- Score: 41.96019347138128
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most model-based 3D hand pose and shape estimation methods directly regress the parametric model parameters from an image to obtain 3D joints under weak supervision. However, these methods involve solving a complex optimization problem with many local minima, making training difficult. To address this challenge, we propose learning direction-aware hybrid features (DaHyF) that fuse implicit image features and explicit 2D joint coordinate features. This fusion is enhanced by the pixel direction information in the camera coordinate system to estimate pose, shape, and camera viewpoint. Our method directly predicts 3D hand poses with DaHyF representation and reduces jittering during motion capture using prediction confidence based on contrastive learning. We evaluate our method on the FreiHAND dataset and show that it outperforms existing state-of-the-art methods by more than 33% in accuracy. DaHyF also achieves the top ranking on both the HO3Dv2 and HO3Dv3 leaderboards for the metric of Mean Joint Error (after scale and translation alignment). Compared to the second-best results, the largest improvement observed is 10%. We also demonstrate its effectiveness in real-time motion capture scenarios with hand position variability, occlusion, and motion blur.
Related papers
- SCIPaD: Incorporating Spatial Clues into Unsupervised Pose-Depth Joint Learning [17.99904937160487]
We introduce SCIPaD, a novel approach that incorporates spatial clues for unsupervised depth-pose joint learning.
SCIPaD achieves a reduction of 22.2% in average translation error and 34.8% in average angular error for camera pose estimation task on the KITTI Odometry dataset.
arXiv Detail & Related papers (2024-07-07T06:52:51Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - HandDiff: 3D Hand Pose Estimation with Diffusion on Image-Point Cloud [60.47544798202017]
Hand pose estimation is a critical task in various human-computer interaction applications.
This paper proposes HandDiff, a diffusion-based hand pose estimation model that iteratively denoises accurate hand pose conditioned on hand-shaped image-point clouds.
Experimental results demonstrate that the proposed HandDiff significantly outperforms the existing approaches on four challenging hand pose benchmark datasets.
arXiv Detail & Related papers (2024-04-04T02:15:16Z) - Back to Optimization: Diffusion-based Zero-Shot 3D Human Pose Estimation [29.037799937729687]
Learning-based methods have dominated the 3D human pose estimation (HPE) tasks with significantly better performance in most benchmarks than traditional optimization-based methods.
We propose textbfZero-shot textbfDiffusion-based textbfOptimization (textbfZeDO) pipeline for 3D HPE.
Our multi-hypothesis textittextbfZeDO achieves state-of-the-art (SOTA) performance on Human3.6M, with minMPJPE $51.4$
arXiv Detail & Related papers (2023-07-07T21:03:18Z) - LFM-3D: Learnable Feature Matching Across Wide Baselines Using 3D
Signals [9.201550006194994]
Learnable matchers often underperform when there exists only small regions of co-visibility between image pairs.
We propose LFM-3D, a Learnable Feature Matching framework that uses models based on graph neural networks.
We show that the resulting improved correspondences lead to much higher relative posing accuracy for in-the-wild image pairs.
arXiv Detail & Related papers (2023-03-22T17:46:27Z) - PONet: Robust 3D Human Pose Estimation via Learning Orientations Only [116.1502793612437]
We propose a novel Pose Orientation Net (PONet) that is able to robustly estimate 3D pose by learning orientations only.
PONet estimates the 3D orientation of these limbs by taking advantage of the local image evidence to recover the 3D pose.
We evaluate our method on multiple datasets, including Human3.6M, MPII, MPI-INF-3DHP, and 3DPW.
arXiv Detail & Related papers (2021-12-21T12:48:48Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.