論文の概要: FlowMotion: Target-Predictive Flow Matching for Realistic Text-Driven Human Motion Generation
- arxiv url: http://arxiv.org/abs/2504.01338v1
- Date: Wed, 02 Apr 2025 03:55:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:18:27.193966
- Title: FlowMotion: Target-Predictive Flow Matching for Realistic Text-Driven Human Motion Generation
- Title(参考訳): FlowMotion:リアルテキスト駆動型ヒューマンモーション生成のためのターゲット予測フローマッチング
- Authors: Manolo Canales Cuba, João Paulo Gois,
- Abstract要約: FlowMotionは、条件付きフローマッチングを利用して、モーション合成を改善する新しいアプローチである。
目標運動をより正確に予測し、CFMに関連する固有のジッタを減らすという、革新的な訓練目標が組み込まれている。
実験の結果,FlowMotion は運動の滑らかさと一般化能力のバランスを高くすることがわかった。
- 参考スコア(独自算出の注目度): 0.7366405857677227
- License:
- Abstract: Achieving highly diverse and perceptually consistent 3D character animations with natural motion and low computational costs remains a challenge in computer animation. Existing methods often struggle to provide the nuanced complexity of human movement, resulting in perceptual inconsistencies and motion artifacts. To tackle these issues, we introduce FlowMotion, a novel approach that leverages Conditional Flow Matching (CFM) for improved motion synthesis. FlowMotion incorporates an innovative training objective that more accurately predicts target motion, reducing the inherent jitter associated with CFM while enhancing stability, realism, and computational efficiency in generating animations. This direct prediction approach enhances the perceptual quality of animations by reducing erratic motion and aligning the training more closely with the dynamic characteristics of human movement. Our experimental results demonstrate that FlowMotion achieves higher balance between motion smoothness and generalization capability while maintaining the computational efficiency inherent in flow matching compared to state-of-the-art methods.
- Abstract(参考訳): 自然運動と計算コストの低い高度に多様かつ知覚的に整合した3Dキャラクターアニメーションを実現することは、コンピュータアニメーションの課題である。
既存の方法はしばしば人間の動きの微妙な複雑さを提供するのに苦労し、知覚上の矛盾と動きの人工物をもたらす。
これらの問題に対処するために,条件付きフローマッチング(CFM)を利用した動き合成の改良手法であるFlowMotionを導入する。
FlowMotionは、目標運動をより正確に予測し、CFMに関連する固有のジッタを減らすとともに、アニメーション生成の安定性、リアリズム、計算効率を向上させる革新的なトレーニング目標を組み込んでいる。
この直接予測アプローチは、過激な動きを減らし、トレーニングを人間の運動の動的な特性とより密に調整することにより、アニメーションの知覚品質を高める。
実験の結果,FlowMotionは動きの滑らかさと一般化能力のバランスを保ちながら,フローマッチングに固有の計算効率を最先端の手法と比較した上で高いバランスを保っていることがわかった。
関連論文リスト
- A Plug-and-Play Physical Motion Restoration Approach for In-the-Wild High-Difficulty Motions [56.709280823844374]
動作コンテキストとビデオマスクを利用して、欠陥のある動作を修復するマスクベースの動作補正モジュール(MCM)を導入する。
また,運動模倣のための事前訓練および適応手法を用いた物理ベースの運動伝達モジュール (PTM) を提案する。
本手法は,高速な移動を含む映像モーションキャプチャ結果を物理的に洗練するためのプラグイン・アンド・プレイモジュールとして設計されている。
論文 参考訳(メタデータ) (2024-12-23T08:26:00Z) - Generation of Complex 3D Human Motion by Temporal and Spatial Composition of Diffusion Models [9.739611757541535]
私たちのアプローチでは、複雑なアクションをより単純な動き、特にトレーニング中に観察される動作に分解します。
これらの単純な動きは、拡散モデルの性質を用いて単一の現実的なアニメーションに結合される。
本研究では,2つの人間の動作データセットを基本的な動作と複雑な動作に分割して評価し,その性能を最先端の動作と比較する。
論文 参考訳(メタデータ) (2024-09-18T12:32:39Z) - COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation [98.05046790227561]
COINは、人間の動きとカメラの動きを細粒度に制御できる、コントロール・インパインティング・モーション拡散である。
COINは、グローバルな人間の動き推定とカメラの動き推定という観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-08-29T10:36:29Z) - Spectral Motion Alignment for Video Motion Transfer using Diffusion Models [54.32923808964701]
スペクトル運動アライメント(英: Spectral Motion Alignment、SMA)は、フーリエ変換とウェーブレット変換を用いて運動ベクトルを洗練・整列するフレームワークである。
SMAは周波数領域の正規化を取り入れて動きパターンを学習し、全体フレームのグローバルな動きのダイナミクスの学習を容易にする。
大規模な実験は、様々なビデオカスタマイズフレームワーク間の計算効率と互換性を維持しながら、モーション転送を改善するSMAの有効性を示す。
論文 参考訳(メタデータ) (2024-03-22T14:47:18Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
本研究では,効率的なサンプリングと効率性を備えた人体運動生成のための新しい生成モデルであるemphMotion Flow Matchingを提案する。
提案手法は, 従来の拡散モデルにおいて, サンプリングの複雑さを1000ステップから10ステップに減らし, テキスト・ツー・モーション・ジェネレーション・ベンチマークやアクション・ツー・モーション・ジェネレーション・ベンチマークで同等の性能を実現する。
論文 参考訳(メタデータ) (2023-12-14T12:57:35Z) - AAMDM: Accelerated Auto-regressive Motion Diffusion Model [10.94879097495769]
本稿では,AAMDM(Accelerated Auto-Regressive Motion Diffusion Model)を紹介する。
AAMDMは、品質、多様性、効率性を同時に達成するために設計された、新しいモーション合成フレームワークである。
AAMDMは動作品質,多様性,実行効率において,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-12-02T23:52:21Z) - Human MotionFormer: Transferring Human Motions with Vision Transformers [73.48118882676276]
人間の動き伝達は、運動合成のためにターゲットの動的人物からソースの静的人物に動きを伝達することを目的としている。
本稿では,世界的および地域的認識を活用して,大規模かつ微妙な動きマッチングを捉える階層型ViTフレームワークであるHuman MotionFormerを提案する。
我々のHuman MotionFormerは、定性的かつ定量的に新しい最先端のパフォーマンスをセットしている。
論文 参考訳(メタデータ) (2023-02-22T11:42:44Z) - MoFusion: A Framework for Denoising-Diffusion-based Motion Synthesis [73.52948992990191]
MoFusionは、高品質な条件付き人間のモーション合成のための新しいノイズ拡散ベースのフレームワークである。
本研究では,運動拡散フレームワーク内での運動可視性に対して,よく知られたキネマティック損失を導入する方法を提案する。
文献の確立されたベンチマークにおけるMoFusionの有効性を,技術の現状と比較した。
論文 参考訳(メタデータ) (2022-12-08T18:59:48Z) - MotionAug: Augmentation with Physical Correction for Human Motion
Prediction [19.240717471864723]
本稿では,動き合成を取り入れた動きデータ拡張手法を提案する。
提案手法は,リカレントニューラルネットワークとグラフ畳み込みネットワークを併用した人間の動き予測モデルにおいて,従来の雑音に基づく動き増進手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-03-17T06:53:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。