DF-Calib: Targetless LiDAR-Camera Calibration via Depth Flow
- URL: http://arxiv.org/abs/2504.01416v1
- Date: Wed, 02 Apr 2025 07:09:44 GMT
- Title: DF-Calib: Targetless LiDAR-Camera Calibration via Depth Flow
- Authors: Shu Han, Xubo Zhu, Ji Wu, Ximeng Cai, Wen Yang, Huai Yu, Gui-Song Xia,
- Abstract summary: DF-Calib is a LiDAR-camera calibration method that reformulates calibration as an intra-modality depth flow estimation problem.<n> DF-Calib estimates a dense depth map from the camera image and completes the sparse LiDAR projected depth map.<n>We introduce a reliability map to prioritize valid pixels and propose a perceptually weighted sparse flow loss to enhance depth flow estimation.
- Score: 30.56092814783138
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Precise LiDAR-camera calibration is crucial for integrating these two sensors into robotic systems to achieve robust perception. In applications like autonomous driving, online targetless calibration enables a prompt sensor misalignment correction from mechanical vibrations without extra targets. However, existing methods exhibit limitations in effectively extracting consistent features from LiDAR and camera data and fail to prioritize salient regions, compromising cross-modal alignment robustness. To address these issues, we propose DF-Calib, a LiDAR-camera calibration method that reformulates calibration as an intra-modality depth flow estimation problem. DF-Calib estimates a dense depth map from the camera image and completes the sparse LiDAR projected depth map, using a shared feature encoder to extract consistent depth-to-depth features, effectively bridging the 2D-3D cross-modal gap. Additionally, we introduce a reliability map to prioritize valid pixels and propose a perceptually weighted sparse flow loss to enhance depth flow estimation. Experimental results across multiple datasets validate its accuracy and generalization,with DF-Calib achieving a mean translation error of 0.635cm and rotation error of 0.045 degrees on the KITTI dataset.
Related papers
- Targetless LiDAR-Camera Calibration with Anchored 3D Gaussians [21.057702337896995]
We present a targetless LiDAR-camera calibration method that jointly optimize sensor poses and scene geometry from arbitrary scenes.
We validate our method through extensive experiments on two real-world autonomous driving datasets.
arXiv Detail & Related papers (2025-04-06T20:00:01Z) - Robust LiDAR-Camera Calibration with 2D Gaussian Splatting [0.3281128493853064]
A critical and initial step in integrating the LiDAR and camera data is the calibration of the LiDAR-camera system.<n>Most existing calibration methods rely on auxiliary target objects, which often involve complex manual operations.<n>We propose a calibration method that estimates LiDAR-camera extrinsic parameters using geometric constraints.
arXiv Detail & Related papers (2025-04-01T08:19:26Z) - YOCO: You Only Calibrate Once for Accurate Extrinsic Parameter in LiDAR-Camera Systems [0.5999777817331317]
In a multi-sensor fusion system composed of cameras and LiDAR, precise extrinsic calibration contributes to the system's long-term stability and accurate perception of the environment.
This paper proposes a novel fully automatic extrinsic calibration method for LiDAR-camera systems that circumvents the need for corresponding point registration.
arXiv Detail & Related papers (2024-07-25T13:44:49Z) - SDGE: Stereo Guided Depth Estimation for 360$^\circ$ Camera Sets [65.64958606221069]
Multi-camera systems are often used in autonomous driving to achieve a 360$circ$ perception.
These 360$circ$ camera sets often have limited or low-quality overlap regions, making multi-view stereo methods infeasible for the entire image.
We propose the Stereo Guided Depth Estimation (SGDE) method, which enhances depth estimation of the full image by explicitly utilizing multi-view stereo results on the overlap.
arXiv Detail & Related papers (2024-02-19T02:41:37Z) - W-HMR: Monocular Human Mesh Recovery in World Space with Weak-Supervised Calibration [57.37135310143126]
Previous methods for 3D motion recovery from monocular images often fall short due to reliance on camera coordinates.
We introduce W-HMR, a weak-supervised calibration method that predicts "reasonable" focal lengths based on body distortion information.
We also present the OrientCorrect module, which corrects body orientation for plausible reconstructions in world space.
arXiv Detail & Related papers (2023-11-29T09:02:07Z) - P2O-Calib: Camera-LiDAR Calibration Using Point-Pair Spatial Occlusion
Relationship [1.6921147361216515]
We propose a novel target-less calibration approach based on the 2D-3D edge point extraction using the occlusion relationship in 3D space.
Our method achieves low error and high robustness that can contribute to the practical applications relying on high-quality Camera-LiDAR calibration.
arXiv Detail & Related papers (2023-11-04T14:32:55Z) - From Chaos to Calibration: A Geometric Mutual Information Approach to
Target-Free Camera LiDAR Extrinsic Calibration [4.378156825150505]
We propose a target free extrinsic calibration algorithm that requires no ground truth training data.
We demonstrate our proposed improvement using the KITTI and KITTI-360 fisheye data set.
arXiv Detail & Related papers (2023-11-03T13:30:31Z) - Continuous Online Extrinsic Calibration of Fisheye Camera and LiDAR [7.906477322731106]
An accurate extrinsic calibration is required to fuse the camera and LiDAR data into a common spatial reference frame required by high-level perception functions.
There is a need for continuous online extrinsic calibration algorithms which can automatically update the value of the camera-LiDAR calibration during the life of the vehicle using only sensor data.
We propose using mutual information between the camera image's depth estimate, provided by commonly available monocular depth estimation networks, and the LiDAR pointcloud's geometric distance as a optimization metric for extrinsic calibration.
arXiv Detail & Related papers (2023-06-22T23:16:31Z) - Towards Nonlinear-Motion-Aware and Occlusion-Robust Rolling Shutter
Correction [54.00007868515432]
Existing methods face challenges in estimating the accurate correction field due to the uniform velocity assumption.
We propose a geometry-based Quadratic Rolling Shutter (QRS) motion solver, which precisely estimates the high-order correction field of individual pixels.
Our method surpasses the state-of-the-art by +4.98, +0.77, and +4.33 of PSNR on Carla-RS, Fastec-RS, and BS-RSC datasets, respectively.
arXiv Detail & Related papers (2023-03-31T15:09:18Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - Learning Camera Miscalibration Detection [83.38916296044394]
This paper focuses on a data-driven approach to learn the detection of miscalibration in vision sensors, specifically RGB cameras.
Our contributions include a proposed miscalibration metric for RGB cameras and a novel semi-synthetic dataset generation pipeline based on this metric.
By training a deep convolutional neural network, we demonstrate the effectiveness of our pipeline to identify whether a recalibration of the camera's intrinsic parameters is required or not.
arXiv Detail & Related papers (2020-05-24T10:32:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.