LLM-VPRF: Large Language Model Based Vector Pseudo Relevance Feedback
- URL: http://arxiv.org/abs/2504.01448v1
- Date: Wed, 02 Apr 2025 08:02:01 GMT
- Title: LLM-VPRF: Large Language Model Based Vector Pseudo Relevance Feedback
- Authors: Hang Li, Shengyao Zhuang, Bevan Koopman, Guido Zuccon,
- Abstract summary: Vector Pseudo Relevance Feedback (VPRF) has shown promising results in improving BERT-based dense retrieval systems.<n>This paper investigates the generalizability of VPRF to Large Language Model (LLM) based dense retrievers.
- Score: 31.017301950179295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vector Pseudo Relevance Feedback (VPRF) has shown promising results in improving BERT-based dense retrieval systems through iterative refinement of query representations. This paper investigates the generalizability of VPRF to Large Language Model (LLM) based dense retrievers. We introduce LLM-VPRF and evaluate its effectiveness across multiple benchmark datasets, analyzing how different LLMs impact the feedback mechanism. Our results demonstrate that VPRF's benefits successfully extend to LLM architectures, establishing it as a robust technique for enhancing dense retrieval performance regardless of the underlying models. This work bridges the gap between VPRF with traditional BERT-based dense retrievers and modern LLMs, while providing insights into their future directions.
Related papers
- Pseudo-Relevance Feedback Can Improve Zero-Shot LLM-Based Dense Retrieval [29.934928091542375]
Pseudo-relevance feedback (PRF) refines queries by leveraging initially retrieved documents to improve retrieval effectiveness.<n>In this paper, we investigate how large language models (LLMs) can facilitate PRF for zero-shot LLM-based dense retrieval.
arXiv Detail & Related papers (2025-03-19T04:30:20Z) - LLM-QE: Improving Query Expansion by Aligning Large Language Models with Ranking Preferences [21.777817032607405]
This paper introduces LLM-QE, a novel approach that leverages Large Language Models (LLMs) to generate document-based query expansions.<n>Experiments on the zero-shot dense retrieval model, Contriever, demonstrate the effectiveness of LLM-QE, achieving an improvement of over 8%.<n>LLM-QE also improves the training process of dense retrievers, achieving a more than 5% improvement after fine-tuning.
arXiv Detail & Related papers (2025-02-24T11:15:41Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
We show that fine-tuning with LLM-generated data improves target task performance and reduces out-of-domain degradation.
This is the first mechanistic explanation for the superior OOD robustness conferred by LLM-generated training data.
arXiv Detail & Related papers (2025-01-24T08:18:56Z) - Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation [20.420575358183687]
Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs)
Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG.
We propose a novel framework, FiGRet, which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective.
arXiv Detail & Related papers (2024-11-06T14:42:39Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - R-SFLLM: Jamming Resilient Framework for Split Federated Learning with Large Language Models [83.77114091471822]
Split federated learning (SFL) is a compute-efficient paradigm in distributed machine learning (ML)
A challenge in SFL, particularly when deployed over wireless channels, is the susceptibility of transmitted model parameters to adversarial jamming.
This is particularly pronounced for word embedding parameters in large language models (LLMs), which are crucial for language understanding.
A physical layer framework is developed for resilient SFL with LLMs (R-SFLLM) over wireless networks.
arXiv Detail & Related papers (2024-07-16T12:21:29Z) - Reinforcement Retrieval Leveraging Fine-grained Feedback for Fact Checking News Claims with Black-Box LLM [7.702325506088706]
We propose an approach leveraging Fine-grained Feedback with Reinforcement Retrieval (FFRR) to enhance fact-checking on news claims.
We evaluate our model on two public datasets for real-world news claim verification.
arXiv Detail & Related papers (2024-04-26T09:38:27Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - LLMRec: Benchmarking Large Language Models on Recommendation Task [54.48899723591296]
The application of Large Language Models (LLMs) in the recommendation domain has not been thoroughly investigated.
We benchmark several popular off-the-shelf LLMs on five recommendation tasks, including rating prediction, sequential recommendation, direct recommendation, explanation generation, and review summarization.
The benchmark results indicate that LLMs displayed only moderate proficiency in accuracy-based tasks such as sequential and direct recommendation.
arXiv Detail & Related papers (2023-08-23T16:32:54Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.