Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation
- URL: http://arxiv.org/abs/2411.03957v1
- Date: Wed, 06 Nov 2024 14:42:39 GMT
- Title: Fine-Grained Guidance for Retrievers: Leveraging LLMs' Feedback in Retrieval-Augmented Generation
- Authors: Yuhang Liu, Xueyu Hu, Shengyu Zhang, Jingyuan Chen, Fan Wu, Fei Wu,
- Abstract summary: Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs)
Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG.
We propose a novel framework, FiGRet, which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective.
- Score: 20.420575358183687
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has proven to be an effective method for mitigating hallucination issues inherent in large language models (LLMs). Previous approaches typically train retrievers based on semantic similarity, lacking optimization for RAG. More recent works have proposed aligning retrievers with the preference signals of LLMs. However, these preference signals are often difficult for dense retrievers, which typically have weaker language capabilities, to understand and learn effectively. Drawing inspiration from pedagogical theories like Guided Discovery Learning, we propose a novel framework, FiGRet (Fine-grained Guidance for Retrievers), which leverages the language capabilities of LLMs to construct examples from a more granular, information-centric perspective to guide the learning of retrievers. Specifically, our method utilizes LLMs to construct easy-to-understand examples from samples where the retriever performs poorly, focusing on three learning objectives highly relevant to the RAG scenario: relevance, comprehensiveness, and purity. These examples serve as scaffolding to ultimately align the retriever with the LLM's preferences. Furthermore, we employ a dual curriculum learning strategy and leverage the reciprocal feedback between LLM and retriever to further enhance the performance of the RAG system. A series of experiments demonstrate that our proposed framework enhances the performance of RAG systems equipped with different retrievers and is applicable to various LLMs.
Related papers
- Invar-RAG: Invariant LLM-aligned Retrieval for Better Generation [43.630437906898635]
We propose a novel two-stage fine-tuning architecture called Invar-RAG.
In the retrieval stage, an LLM-based retriever is constructed by integrating LoRA-based representation learning.
In the generation stage, a refined fine-tuning method is employed to improve LLM accuracy in generating answers based on retrieved information.
arXiv Detail & Related papers (2024-11-11T14:25:37Z) - In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
In-context learning of large language models (LLMs) makes predictions only based on instructions augmented with a few examples.
Existing example selection methods for ICL utilize sparse or dense retrievers and derive effective performance.
We propose our policy-based reinforcement learning framework for example selection (RLS), which consists of a language model (LM) selector and an LLM generator.
arXiv Detail & Related papers (2024-08-23T12:32:12Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
iterative retrieval is a novel framework that empowers retrievers to make iterative decisions through policy optimization.
We instantiate an iterative retriever for composing in-context learning exemplars and apply it to various semantic parsing tasks.
By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever.
arXiv Detail & Related papers (2024-06-20T21:07:55Z) - R^2AG: Incorporating Retrieval Information into Retrieval Augmented Generation [11.890598082534577]
Retrieval augmented generation (RAG) has been applied in many scenarios to augment large language models (LLMs) with external documents provided by retrievers.
This paper proposes R$2$AG, a novel enhanced RAG framework that incorporates Retrieval information into Retrieval Augmented Generation.
arXiv Detail & Related papers (2024-06-19T06:19:48Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
Large Language Models (LLMs) are emerging as promising approaches to enhance session-based recommendation (SBR)
We propose a Reflective Reinforcement Large Language Model (Re2LLM) for SBR, guiding LLMs to focus on specialized knowledge essential for more accurate recommendations.
arXiv Detail & Related papers (2024-03-25T05:12:18Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - Bridging the Preference Gap between Retrievers and LLMs [32.342245642909404]
Large Language Models (LLMs) have demonstrated superior results across a wide range of tasks.
Retrieval-augmented Generation (RAG) is an effective way to enhance the performance by locating relevant information.
However, the relationship between retrievers and LLMs in a RAG is still under-investigated.
arXiv Detail & Related papers (2024-01-13T02:20:17Z) - Parrot: Enhancing Multi-Turn Instruction Following for Large Language Models [79.32652077838046]
We introduce Parrot, a solution aiming to enhance multi-turn instruction following for large language models (LLMs)
First, we introduce an efficient but effective method for collecting multi-turn instructions that feature human-like queries, such as anaphora and ellipsis.
Second, we propose a context-aware preference optimization strategy to further enhance LLMs for complex queries in multi-turn interaction.
arXiv Detail & Related papers (2023-10-11T08:36:43Z) - Learning to Retrieve In-Context Examples for Large Language Models [69.9707552694766]
Large language models (LLMs) have demonstrated their ability to learn in-context.
The effectiveness of in-context learning is heavily reliant on the quality of the selected examples.
We propose a novel framework to iteratively train dense retrievers that can identify high-quality in-context examples.
arXiv Detail & Related papers (2023-07-14T05:23:08Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
Large Language Models (LLMs) have emerged as powerful tools in the field of Natural Language Processing (NLP)
This survey presents a taxonomy that categorizes these models into two major paradigms, respectively Discriminative LLM for Recommendation (DLLM4Rec) and Generative LLM for Recommendation (GLLM4Rec)
arXiv Detail & Related papers (2023-05-31T13:51:26Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
Large Language Models (LLMs) play powerful, black-box readers in the retrieve-then-read pipeline.
This work introduces a new framework, Rewrite-Retrieve-Read instead of the previous retrieve-then-read for the retrieval-augmented LLMs.
arXiv Detail & Related papers (2023-05-23T17:27:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.