論文の概要: Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning
- arxiv url: http://arxiv.org/abs/2504.01588v1
- Date: Wed, 02 Apr 2025 10:45:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-03 13:19:50.131536
- Title: Building Knowledge from Interactions: An LLM-Based Architecture for Adaptive Tutoring and Social Reasoning
- Title(参考訳): インタラクションから知識を構築する: 適応的チューニングとソーシャル推論のためのLLMベースのアーキテクチャ
- Authors: Luca Garello, Giulia Belgiovine, Gabriele Russo, Francesco Rea, Alessandra Sciutti,
- Abstract要約: 大規模言語モデルは、人間のようなコミュニケーションにおいて有望であるが、そのスタンドアロンの使用は、メモリ制約とコンテキストの不整合によって妨げられている。
この研究は、LLMに基づく社会的・タスク指向のヒューマンロボットインタラクションにおける自律的意思決定を強化する、マルチモーダルで認知にインスパイアされたフレームワークを提示する。
自律性とパーソナライゼーションをさらに強化するために,体験の選択,保存,検索を行うメモリシステムを導入する。
- 参考スコア(独自算出の注目度): 42.09560737219404
- License:
- Abstract: Integrating robotics into everyday scenarios like tutoring or physical training requires robots capable of adaptive, socially engaging, and goal-oriented interactions. While Large Language Models show promise in human-like communication, their standalone use is hindered by memory constraints and contextual incoherence. This work presents a multimodal, cognitively inspired framework that enhances LLM-based autonomous decision-making in social and task-oriented Human-Robot Interaction. Specifically, we develop an LLM-based agent for a robot trainer, balancing social conversation with task guidance and goal-driven motivation. To further enhance autonomy and personalization, we introduce a memory system for selecting, storing and retrieving experiences, facilitating generalized reasoning based on knowledge built across different interactions. A preliminary HRI user study and offline experiments with a synthetic dataset validate our approach, demonstrating the system's ability to manage complex interactions, autonomously drive training tasks, and build and retrieve contextual memories, advancing socially intelligent robotics.
- Abstract(参考訳): ロボット工学を家庭教師や体育などの日常のシナリオに統合するには、適応的で社会的に関与し、目標指向の対話が可能なロボットが必要である。
大きな言語モデルは、人間のようなコミュニケーションにおいて有望であるが、そのスタンドアロンの使用は、メモリ制約とコンテキストの不整合によって妨げられている。
この研究は、LLMに基づく社会的・タスク指向のヒューマンロボットインタラクションにおける自律的意思決定を強化する、マルチモーダルで認知にインスパイアされたフレームワークを提示する。
具体的には,ロボットトレーナーのためのLLMエージェントを開発し,タスク指導と目標駆動型モチベーションのバランスをとる。
自律性とパーソナライゼーションをさらに強化するために,さまざまなインタラクションにまたがって構築された知識に基づく一般化推論を容易にし,経験の選択,記憶,検索を行うメモリシステムを導入する。
HRIユーザによる予備的な研究と、合成データセットによるオフライン実験は、私たちのアプローチを検証し、複雑なインタラクションを管理し、トレーニングタスクを自律的に駆動し、コンテキスト記憶を構築して取得し、社会的にインテリジェントなロボティクスを前進させるシステムの能力を実証する。
関連論文リスト
- Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
我々は,ロボット自律のための自己教師型ニューロシンボリック(NeSy)計算フレームワーク,インペラティブラーニング(IL)を導入する。
ILを2段階最適化(BLO)として定式化し、3つのモジュール間の相互学習を可能にする。
ILはロボットの自律性を大幅に向上させ、多様な領域にわたるさらなる研究を促進することを期待している。
論文 参考訳(メタデータ) (2024-06-23T12:02:17Z) - Nadine: An LLM-driven Intelligent Social Robot with Affective Capabilities and Human-like Memory [3.3906920519220054]
Nadineプラットフォームのためのインテリジェントで堅牢なソーシャルロボティクスシステムを開発するための当社のアプローチについて説明する。
我々は,Large Language Models(LLMs)を統合し,これらのモデルの強力な推論と命令追従機能を巧みに活用することで,これを実現する。
このアプローチは、人間のような長期記憶や洗練された感情評価を実装しない、現在最先端のLCMベースのエージェントと比較して、斬新である。
論文 参考訳(メタデータ) (2024-05-30T15:55:41Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
本研究では,自然相互作用から複雑な行動の漸進的な学習を実現するシステムを提案する。
本システムは,ヒューマノイドロボットARMAR-6のロボット認知アーキテクチャに組み込まれている。
論文 参考訳(メタデータ) (2023-09-08T13:29:05Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - LLM as A Robotic Brain: Unifying Egocentric Memory and Control [77.0899374628474]
Embodied AIは、物理的または仮想的なエンボディメント(つまりロボット)を持つインテリジェントシステムの研究と開発に焦点を当てている。
メモリとコントロールは、具体化されたシステムの2つの不可欠な部分であり、通常、それぞれをモデル化するために別々のフレームワークを必要とします。
ロボット脳として大規模言語モデルを用いて,エゴセントリックな記憶と制御を統一するLLM-Brainという新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-19T00:08:48Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - Autonomous Open-Ended Learning of Tasks with Non-Stationary
Interdependencies [64.0476282000118]
固有のモチベーションは、目標間のトレーニング時間を適切に割り当てるタスクに依存しないシグナルを生成することが証明されている。
内在的に動機付けられたオープンエンドラーニングの分野におけるほとんどの研究は、目標が互いに独立しているシナリオに焦点を当てているが、相互依存タスクの自律的な獲得を研究するのはごくわずかである。
特に,タスク間の関係に関する情報をアーキテクチャのより高レベルなレベルで組み込むことの重要性を示す。
そして、自律的に取得したシーケンスを格納する新しい学習層を追加することで、前者を拡張する新しいシステムであるH-GRAILを紹介する。
論文 参考訳(メタデータ) (2022-05-16T10:43:01Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
本研究では,ロボットインタラクションポリシーを強化するために,強化学習を伴うマルチモーダルヒューマンロボットインタラクション(HRI)フレームワークを実証する。
目標は、ロボットがより自然で魅力的なHRIフレームワークを作れるように、このフレームワークを社会シナリオに適用することだ。
論文 参考訳(メタデータ) (2021-10-08T00:35:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。