Proposition of Affordance-Driven Environment Recognition Framework Using Symbol Networks in Large Language Models
- URL: http://arxiv.org/abs/2504.01644v1
- Date: Wed, 02 Apr 2025 11:48:44 GMT
- Title: Proposition of Affordance-Driven Environment Recognition Framework Using Symbol Networks in Large Language Models
- Authors: Kazuma Arii, Satoshi Kurihara,
- Abstract summary: This study proposes a method for automatic affordance acquisition by leveraging large language models (LLMs)<n> Experiments using apple'' as an example demonstrated the method's ability to extract context-dependent affordances with high explainability.
- Score: 1.2430809884830318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the quest to enable robots to coexist with humans, understanding dynamic situations and selecting appropriate actions based on common sense and affordances are essential. Conventional AI systems face challenges in applying affordance, as it represents implicit knowledge derived from common sense. However, large language models (LLMs) offer new opportunities due to their ability to process extensive human knowledge. This study proposes a method for automatic affordance acquisition by leveraging LLM outputs. The process involves generating text using LLMs, reconstructing the output into a symbol network using morphological and dependency analysis, and calculating affordances based on network distances. Experiments using ``apple'' as an example demonstrated the method's ability to extract context-dependent affordances with high explainability. The results suggest that the proposed symbol network, reconstructed from LLM outputs, enables robots to interpret affordances effectively, bridging the gap between symbolized data and human-like situational understanding.
Related papers
- Towards Automated Semantic Interpretability in Reinforcement Learning via Vision-Language Models [1.8032335403003321]
We introduce Semantically Interpretable Reinforcement Learning with Vision-Language Models Empowered Automation (SILVA)<n>SILVA is an automated framework that leverages pre-trained vision-language models (VLM) for semantic feature extraction and interpretable tree-based models for policy optimization.
arXiv Detail & Related papers (2025-03-20T21:53:19Z) - LatentQA: Teaching LLMs to Decode Activations Into Natural Language [72.87064562349742]
We introduce LatentQA, the task of answering open-ended questions about model activations in natural language.
We propose Latent Interpretation Tuning (LIT), which finetunes a decoder LLM on a dataset of activations and associated question-answer pairs.
Our decoder also specifies a differentiable loss that we use to control models, such as debiasing models on stereotyped sentences and controlling the sentiment of generations.
arXiv Detail & Related papers (2024-12-11T18:59:33Z) - Neurosymbolic AI approach to Attribution in Large Language Models [5.3454230926797734]
Neurosymbolic AI (NesyAI) combines the strengths of neural networks with structured symbolic reasoning.
This paper explores how NesyAI frameworks can enhance existing attribution models, offering more reliable, interpretable, and adaptable systems.
arXiv Detail & Related papers (2024-09-30T02:20:36Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - From Feature Importance to Natural Language Explanations Using LLMs with RAG [4.204990010424084]
We introduce traceable question-answering, leveraging an external knowledge repository to inform responses of Large Language Models (LLMs)
This knowledge repository comprises contextual details regarding the model's output, containing high-level features, feature importance, and alternative probabilities.
We integrate four key characteristics - social, causal, selective, and contrastive - drawn from social science research on human explanations into a single-shot prompt, guiding the response generation process.
arXiv Detail & Related papers (2024-07-30T17:27:20Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Large Language Models are Interpretable Learners [53.56735770834617]
In this paper, we show a combination of Large Language Models (LLMs) and symbolic programs can bridge the gap between expressiveness and interpretability.
The pretrained LLM with natural language prompts provides a massive set of interpretable modules that can transform raw input into natural language concepts.
As the knowledge learned by LSP is a combination of natural language descriptions and symbolic rules, it is easily transferable to humans (interpretable) and other LLMs.
arXiv Detail & Related papers (2024-06-25T02:18:15Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
We introduce a method that utilizes the ASR system's lattice output instead of relying solely on the top hypothesis.
Our in-context learning experiments, covering spoken question answering and intent classification, underline the LLM's resilience to noisy speech transcripts.
arXiv Detail & Related papers (2024-01-05T17:58:10Z) - Goal Space Abstraction in Hierarchical Reinforcement Learning via
Set-Based Reachability Analysis [0.5409704301731713]
We introduce a Feudal HRL algorithm that concurrently learns both the goal representation and a hierarchical policy.
We evaluate our approach on complex navigation tasks, showing the learned representation is interpretable, transferrable and results in data efficient learning.
arXiv Detail & Related papers (2023-09-14T12:39:26Z) - IERL: Interpretable Ensemble Representation Learning -- Combining
CrowdSourced Knowledge and Distributed Semantic Representations [11.008412414253662]
Large Language Models (LLMs) encode meanings of words in the form of distributed semantics.
Recent studies have shown that LLMs tend to generate unintended, inconsistent, or wrong texts as outputs.
We propose a novel ensemble learning method, Interpretable Ensemble Representation Learning (IERL), that systematically combines LLM and crowdsourced knowledge representations.
arXiv Detail & Related papers (2023-06-24T05:02:34Z) - Symbolic Visual Reinforcement Learning: A Scalable Framework with
Object-Level Abstraction and Differentiable Expression Search [63.3745291252038]
We propose DiffSES, a novel symbolic learning approach that discovers discrete symbolic policies.
By using object-level abstractions instead of raw pixel-level inputs, DiffSES is able to leverage the simplicity and scalability advantages of symbolic expressions.
Our experiments demonstrate that DiffSES is able to generate symbolic policies that are simpler and more scalable than state-of-the-art symbolic RL methods.
arXiv Detail & Related papers (2022-12-30T17:50:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.