Iterative Interpolation Schedules for Quantum Approximate Optimization Algorithm
- URL: http://arxiv.org/abs/2504.01694v1
- Date: Wed, 02 Apr 2025 12:53:21 GMT
- Title: Iterative Interpolation Schedules for Quantum Approximate Optimization Algorithm
- Authors: Anuj Apte, Shree Hari Sureshbabu, Ruslan Shaydulin, Sami Boulebnane, Zichang He, Dylan Herman, James Sud, Marco Pistoia,
- Abstract summary: We present an iterative method that exploits the smoothness of optimal parameter schedules by expressing them in a basis of functions.<n>We demonstrate our method achieves better performance with fewer optimization steps than current approaches.<n>For the largest LABS instance, we achieve near-optimal merit factors with schedules exceeding 1000 layers, an order of magnitude beyond previous methods.
- Score: 1.845978975395919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Approximate Optimization Algorithm (QAOA) is a promising quantum optimization heuristic with empirical evidence of speedup over classical state-of-the-art for some problems. QAOA solves optimization problems using a parameterized circuit with $p$ layers, with higher $p$ leading to better solutions. Existing methods require optimizing $2p$ independent parameters which is challenging for large $p$. In this work, we present an iterative interpolation method that exploits the smoothness of optimal parameter schedules by expressing them in a basis of orthogonal functions, generalizing Zhou et al. By optimizing a small number of basis coefficients and iteratively increasing both circuit depth and the number of coefficients until convergence, our approach enables construction of high-quality schedules for large $p$. We demonstrate our method achieves better performance with fewer optimization steps than current approaches on three problems: the Sherrington-Kirkpatrick (SK) model, portfolio optimization, and Low Autocorrelation Binary Sequences (LABS). For the largest LABS instance, we achieve near-optimal merit factors with schedules exceeding 1000 layers, an order of magnitude beyond previous methods. As an application of our technique, we observe a mild growth of QAOA depth sufficient to solve SK model exactly, a result of independent interest.
Related papers
- Extrapolation method to optimize linear-ramp QAOA parameters: Evaluation of QAOA runtime scaling [0.0]
The linear-ramp QAOA has been proposed to address this issue, as it relies on only two parameters which have to be optimized.
We apply this method to several use cases such as portfolio optimization, feature selection and clustering, and compare the quantum runtime scaling with that of classical methods.
arXiv Detail & Related papers (2025-04-11T14:30:26Z) - Scalable Min-Max Optimization via Primal-Dual Exact Pareto Optimization [66.51747366239299]
We propose a smooth variant of the min-max problem based on the augmented Lagrangian.
The proposed algorithm scales better with the number of objectives than subgradient-based strategies.
arXiv Detail & Related papers (2025-03-16T11:05:51Z) - A Multilevel Approach For Solving Large-Scale QUBO Problems With Noisy Hybrid Quantum Approximate Optimization [3.3493770627144004]
We experimentally test how existing quantum processing units (QPUs) perform as subsolvers within a multilevel strategy.
We find approximate solutions to $10$ instances of fully connected $82$-qubit Sherrington-Kirkpatrick graphs.
We observe that quantum optimization results are competitive regarding the quality of solutions compared to classicals.
arXiv Detail & Related papers (2024-08-14T20:06:32Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Quantum approximate optimization via learning-based adaptive
optimization [5.399532145408153]
Quantum approximate optimization algorithm (QAOA) is designed to solve objective optimization problems.
Our results demonstrate that the algorithm greatly outperforms conventional approximations in terms of speed, accuracy, efficiency and stability.
This work helps to unlock the full power of QAOA and paves the way toward achieving quantum advantage in practical classical tasks.
arXiv Detail & Related papers (2023-03-27T02:14:56Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
We study unsupervised Machine Learning approaches for setting parameters without optimization.
We showcase them within Recursive-QAOA up to depth $3$ where the number of QAOA parameters used per iteration is limited to $3$.
We obtain similar performances to the case where we extensively optimize the angles, hence saving numerous circuit calls.
arXiv Detail & Related papers (2022-02-18T19:55:42Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
The Quantum Approximate optimisation algorithm is a $p$ layer, time-variable split operator method executed on a quantum processor.
We prove that optimal parameters for $p=1$ layer reduce to one free variable and in the thermodynamic limit, we recover optimal angles.
We moreover demonstrate that conditions for vanishing gradients of the overlap function share a similar form which leads to a linear relation between circuit parameters, independent on the number of qubits.
arXiv Detail & Related papers (2021-09-23T18:00:13Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
We propose a strategy to give high approximation ratio on average, even at large circuit depths, by initializing QAOA with the optimal parameters obtained from the previous depths.
We test our strategy on the Max-cut problem of certain classes of graphs such as the 3-regular graphs and the Erd"os-R'enyi graphs.
arXiv Detail & Related papers (2021-08-11T15:44:16Z) - Divide and Learn: A Divide and Conquer Approach for Predict+Optimize [50.03608569227359]
The predict+optimize problem combines machine learning ofproblem coefficients with a optimization prob-lem that uses the predicted coefficients.
We show how to directlyexpress the loss of the optimization problem in terms of thepredicted coefficients as a piece-wise linear function.
We propose a novel divide and algorithm to tackle optimization problems without this restriction and predict itscoefficients using the optimization loss.
arXiv Detail & Related papers (2020-12-04T00:26:56Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.