Style over Substance: Distilled Language Models Reason Via Stylistic Replication
- URL: http://arxiv.org/abs/2504.01738v1
- Date: Wed, 02 Apr 2025 13:50:20 GMT
- Title: Style over Substance: Distilled Language Models Reason Via Stylistic Replication
- Authors: Philip Lippmann, Jie Yang,
- Abstract summary: Specialized reasoning language models (RLMs) have demonstrated that scaling test-time computation through detailed reasoning traces significantly enhances performance.<n>In this study, we investigate to what extent distilled models internalize replicated stylistic patterns during reasoning.<n>We find that models trained on the synthetic traces achieve comparable performance, indicating that distilled reasoning abilities rely significantly on surface-level patterns.
- Score: 4.313454680394974
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Specialized reasoning language models (RLMs) have demonstrated that scaling test-time computation through detailed reasoning traces significantly enhances performance. Although these traces effectively facilitate knowledge distillation into smaller, instruction-tuned models, the precise nature of transferred reasoning remains unclear. In this study, we investigate to what extent distilled models internalize replicated stylistic patterns during reasoning. To this end, we systematically analyze reasoning traces, identifying structural and lexical patterns that characterize successful reasoning. We then introduce two new datasets -- a dataset of emergent reasoning traces and a synthetic dataset explicitly constructed to replicate these stylistic patterns -- to precisely examine their influence on distilled models' reasoning capabilities. We find that models trained on the synthetic traces achieve comparable performance, indicating that distilled reasoning abilities rely significantly on surface-level patterns. Surprisingly, we observe an increase in performance even when the synthetic traces are altered to lead to the wrong answer. Our findings highlight how stylistic patterns can be leveraged to efficiently enhance LM reasoning across diverse model families.
Related papers
- Do Larger Language Models Imply Better Reasoning? A Pretraining Scaling Law for Reasoning [89.17086632436363]
We introduce a synthetic multihop reasoning environment designed to replicate the structure and distribution of real-world large-scale knowledge graphs.
Our reasoning task involves completing missing edges in the graph, which requires advanced multi-hop reasoning and mimics real-world reasoning scenarios.
To predict the optimal model size for a specific knowledge graph, we find an empirical scaling that linearly maps the knowledge graph search entropy to the optimal model size.
arXiv Detail & Related papers (2025-04-04T17:57:22Z) - Towards Understanding Distilled Reasoning Models: A Representational Approach [6.563993791037387]
We train a crosscoder on Qwen-series models and their fine-tuned variants.<n>Our results suggest that the crosscoder learns features corresponding to various types of reasoning, including self-reflection and verification.
arXiv Detail & Related papers (2025-03-05T18:40:19Z) - Enhancing Logical Reasoning in Large Language Models through Graph-based Synthetic Data [53.433309883370974]
This work explores the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance Large Language Models' reasoning capabilities.<n>Our experiments, conducted on two established natural language reasoning tasks, demonstrate that supervised fine-tuning with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.
arXiv Detail & Related papers (2024-09-19T03:39:09Z) - The Buffer Mechanism for Multi-Step Information Reasoning in Language Models [52.77133661679439]
Investigating internal reasoning mechanisms of large language models can help us design better model architectures and training strategies.
In this study, we constructed a symbolic dataset to investigate the mechanisms by which Transformer models employ vertical thinking strategy.
We proposed a random matrix-based algorithm to enhance the model's reasoning ability, resulting in a 75% reduction in the training time required for the GPT-2 model.
arXiv Detail & Related papers (2024-05-24T07:41:26Z) - Outlier Gradient Analysis: Efficiently Identifying Detrimental Training Samples for Deep Learning Models [36.05242956018461]
In this paper, we establish a bridge between identifying detrimental training samples via influence functions and outlier gradient detection.
We first validate the hypothesis of our proposed outlier gradient analysis approach on synthetic datasets.
We then demonstrate its effectiveness in detecting mislabeled samples in vision models and selecting data samples for improving performance of natural language processing transformer models.
arXiv Detail & Related papers (2024-05-06T21:34:46Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
Saliency post-hoc explainability methods are important tools for understanding increasingly complex NLP models.
We present a methodology for incorporating rationales, which are text annotations explaining human decisions, into text classification models.
arXiv Detail & Related papers (2024-04-03T22:39:33Z) - Revealing Multimodal Contrastive Representation Learning through Latent
Partial Causal Models [85.67870425656368]
We introduce a unified causal model specifically designed for multimodal data.
We show that multimodal contrastive representation learning excels at identifying latent coupled variables.
Experiments demonstrate the robustness of our findings, even when the assumptions are violated.
arXiv Detail & Related papers (2024-02-09T07:18:06Z) - A Comprehensive Evaluation and Analysis Study for Chinese Spelling Check [53.152011258252315]
We show that using phonetic and graphic information reasonably is effective for Chinese Spelling Check.
Models are sensitive to the error distribution of the test set, which reflects the shortcomings of models.
The commonly used benchmark, SIGHAN, can not reliably evaluate models' performance.
arXiv Detail & Related papers (2023-07-25T17:02:38Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
We propose a benchmark to investigate models' logical reasoning capabilities in complex real-life scenarios.
Based on the multi-hop chain of reasoning, the explanation form includes three main components.
We evaluate the current best models' performance on this new explanation form.
arXiv Detail & Related papers (2022-10-22T16:01:13Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
We present a simple model that can be trained on sequence structures.
Results on a large-scale dataset for Fact Extraction and VERification show that our model outperforms the graph-based approaches.
arXiv Detail & Related papers (2021-06-02T05:40:12Z) - What if This Modified That? Syntactic Interventions via Counterfactual
Embeddings [19.3614797257652]
Prior art aims to uncover meaningful properties within model representations via probes, but it is unclear how faithfully such probes portray information that the models actually use.
We propose a technique, inspired by causal analysis, for generating counterfactual embeddings within models.
In experiments testing our technique, we produce evidence that some BERT-based models use a tree-distance-like representation of syntax in downstream prediction tasks.
arXiv Detail & Related papers (2021-05-28T17:27:04Z) - Explainable Deep Modeling of Tabular Data using TableGraphNet [1.376408511310322]
We propose a new architecture that produces explainable predictions in the form of additive feature attributions.
We show that our explainable model attains the same level of performance as black box models.
arXiv Detail & Related papers (2020-02-12T20:02:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.