Quantum-amplified global-phase spectroscopy on an optical clock transition
- URL: http://arxiv.org/abs/2504.01914v1
- Date: Wed, 02 Apr 2025 17:18:18 GMT
- Title: Quantum-amplified global-phase spectroscopy on an optical clock transition
- Authors: Leon Zaporski, Qi Liu, Gustavo Velez, Matthew Radzihovsky, Zeyang Li, Simone Colombo, Edwin Pedrozo-Peñafiel, Vladan Vuletić,
- Abstract summary: We adapt the holonomic quantum-gate concept to develop a novel Rabi-type "global-phase spectroscopy" (GPS)<n>We are able to demonstrate quantum-amplified time-reversal spectroscopy in an OLC that achieves 2.4(5) dB metrological gain without subtracting the laser noise.<n>Our technique is not limited by measurement resolution, scales easily owing to the global nature of entangling interaction, and exhibits high resilience to typical experimental imperfections.
- Score: 5.423659793487148
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical lattice clocks (OLCs) are at the forefront of precision metrology, operating near a standard quantum limit (SQL) set by quantum noise. Harnessing quantum entanglement offers a promising route to surpass this limit, yet there remain practical roadblocks concerning scalability and measurement resolution requirements. Here, we adapt the holonomic quantum-gate concept to develop a novel Rabi-type "global-phase spectroscopy" (GPS) that utilizes the detuning-sensitive global Aharanov-Anandan phase. With this approach, we are able to demonstrate quantum-amplified time-reversal spectroscopy in an OLC that achieves 2.4(7) dB metrological gain without subtracting the laser noise, and 4.0(8) dB improvement in laser noise sensitivity beyond the SQL. We further introduce rotary echo to protect the dynamics from inhomogeneities in light-atom coupling and implement a laser-noise-canceling differential measurement through symmetric phase encoding in two nuclear spin states. Our technique is not limited by measurement resolution, scales easily owing to the global nature of entangling interaction, and exhibits high resilience to typical experimental imperfections. We expect it to be broadly applicable to next-generation atomic clocks and other quantum sensors approaching the fundamental quantum precision limits.
Related papers
- Enhancing Dynamic Range of Sub-Quantum-Limit Measurements via Quantum Deamplification [5.144098198581814]
We introduce a novel quantum deamplification mechanism that extends dynamic range at a minimal cost of sensitivity.<n>Our protocol is within the reach of state-of-the-art atomic-molecular-optical platforms.
arXiv Detail & Related papers (2024-12-19T17:08:27Z) - Universal quantum operations and ancilla-based readout for tweezer clocks [3.2810235099960297]
We show universal quantum operations and ancilla-based readout for ultranarrow optical transitions of neutral atoms.
Our work lays the foundation for hybrid processor-clock devices with neutral atoms and points to a future of practical applications for quantum processors linked with quantum sensors.
arXiv Detail & Related papers (2024-02-25T23:35:36Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations [0.0]
We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
arXiv Detail & Related papers (2023-03-19T15:41:32Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Modeling Quantum Enhanced Sensing on a Quantum Computer [0.0]
Quantum computers allow for direct simulation of the quantum interference and entanglement used in modern interferometry experiments.
We present two quantum circuit models that demonstrate the role of quantum mechanics and entanglement in modern precision sensors.
arXiv Detail & Related papers (2022-09-16T22:29:16Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.