Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations
- URL: http://arxiv.org/abs/2303.10688v1
- Date: Sun, 19 Mar 2023 15:41:32 GMT
- Title: Quantum-enhanced sensing on an optical transition via emergent
collective quantum correlations
- Authors: Johannes Franke, Sean R. Muleady, Raphael Kaubruegger, Florian Kranzl,
Rainer Blatt, Ana Maria Rey, Manoj K. Joshi and Christian F. Roos
- Abstract summary: We show how to harness scalable entanglement in an optical transition using 1D chains of up to 51 ions with state-dependent interactions that decay as a power-law function of the ion separation.
We demonstrate this in a Ramsey-type interferometer, where we reduce the measurement uncertainty by $-3.2 pm 0.5$ dB below the standard quantum limit for N = 51 ions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The control over quantum states in atomic systems has led to the most precise
optical atomic clocks to date. Their sensitivity is currently bounded by the
standard quantum limit, a fundamental floor set by quantum mechanics for
uncorrelated particles, which can nevertheless be overcome when operated with
entangled particles. Yet demonstrating a quantum advantage in real world
sensors is extremely challenging and remains to be achieved aside from two
remarkable examples, LIGO and more recently HAYSTAC. Here we illustrate a
pathway for harnessing scalable entanglement in an optical transition using 1D
chains of up to 51 ions with state-dependent interactions that decay as a
power-law function of the ion separation. We show our sensor can be made to
behave as a one-axis-twisting (OAT) model, an iconic fully connected model
known to generate scalable squeezing. The collective nature of the state
manifests itself in the preservation of the total transverse magnetization, the
reduced growth of finite momentum spin-wave excitations, the generation of spin
squeezing comparable to OAT (a Wineland parameter of $-3.9 \pm 0.3$ dB for only
N = 12 ions) and the development of non-Gaussian states in the form of atomic
multi-headed cat states in the Q-distribution. The simplicity of our protocol
enables scalability to large arrays with minimal overhead, opening the door to
advances in timekeeping as well as new methods for preserving coherence in
quantum simulation and computation. We demonstrate this in a Ramsey-type
interferometer, where we reduce the measurement uncertainty by $-3.2 \pm 0.5$
dB below the standard quantum limit for N = 51 ions.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Finite Pulse-Time Effects in Long-Baseline Quantum Clock Interferometry [45.73541813564926]
We study the interplay of the quantum center-of-mass $-$ that can become delocalized $-$ together with the internal clock transitions.
We show at the example of a Gaussian laser beam that the proposed quantum-clock interferometers are stable against perturbations from varying optical fields.
arXiv Detail & Related papers (2023-09-25T18:00:03Z) - Scalable spin squeezing in a dipolar Rydberg atom array [2.392520546501394]
We show how to enhance the precision of measurements beyond the standard quantum limit.
To do so, one can reshape the quantum projection noise -- a strategy known as squeezing.
We present two independent refinements: first, using a multistep spin-squeezing protocol allows us to further enhance the squeezing by approximately 1 dB, and second, leveraging Floquet engineering to realize Heisenberg interactions.
arXiv Detail & Related papers (2023-03-14T16:35:17Z) - Coherent control of a high-orbital hole in a semiconductor quantum dot [21.05348937863074]
coherent manipulation of single charge carriers in quantum dots is limited mainly to their lowest orbital states.
We demonstrate an all-optical method to control high-orbital states of a hole via stimulated Auger process.
Our work opens new possibilities for understanding the fundamental properties of high-orbital states in quantum emitters.
arXiv Detail & Related papers (2022-12-21T03:49:46Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Entanglement-Enhanced Matter-Wave Interferometry in a High-Finesse
Cavity [0.0]
Entanglement is a fundamental resource that allows quantum sensors to surpass the standard quantum limit set by the quantum collapse of independent atoms.
Collective cavity-QED systems have succeeded in generating large amounts of directly observed entanglement involving the internal degrees of freedom of laser-cooled atomic ensembles.
An entangled state is for the first time successfully injected into a Mach-Zehnder light-pulse interferometer with $1.7+0.5_-0.5$ dB of directly observed metrological enhancement.
arXiv Detail & Related papers (2021-10-26T21:07:25Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Time-Reversal-Based Quantum Metrology with Many-Body Entangled States [0.5911087507716212]
In quantum metrology, entanglement represents a valuable resource that can be used to overcome the Standard Quantum Limit () that bounds the precision of sensors that operate with independent particles.
We implement an effective time-reversal protocol through a controlled sign change in an optically engineered many-body Hamiltonian.
Using a system of 350 neutral $171$Yb atoms, this signal amplification through time-reversed interaction protocol achieves the largest sensitivity improvement beyond the Standard Quantum Limit.
arXiv Detail & Related papers (2021-06-07T16:19:09Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.