Multi-Dimensional AGV Path Planning in 3D Warehouses Using Ant Colony Optimization and Advanced Neural Networks
- URL: http://arxiv.org/abs/2504.01985v1
- Date: Sun, 30 Mar 2025 14:09:21 GMT
- Title: Multi-Dimensional AGV Path Planning in 3D Warehouses Using Ant Colony Optimization and Advanced Neural Networks
- Authors: Bo Zhang, Xiubo Liang, Wei Song, Yulu Chen,
- Abstract summary: This paper introduces a novel AGV path planning approach for 3D warehouse environments that leverages a hybrid framework combining ACO and deep learning models.<n>NAHACO significantly boosts path planning efficiency, yielding faster computation times and superior performance over both vanilla and stateof-the-art methods.<n>In warehouse tests, NAHACO cuts cost by up to 41.5% and congestion by up to 56.1% compared to previous methods.
- Score: 4.517879416915767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within modern warehouse scenarios, the rapid expansion of e-commerce and increasingly complex, multi-level storage environments have exposed the limitations of traditional AGV (Automated Guided Vehicle) path planning methods--often reliant on static 2D models and expert-tuned heuristics that struggle to handle dynamic traffic and congestion. Addressing these limitations, this paper introduces a novel AGV path planning approach for 3D warehouse environments that leverages a hybrid framework combining ACO (Ant Colony Optimization) with deep learning models, called NAHACO (Neural Adaptive Heuristic Ant Colony Optimization). NAHACO integrates three key innovations: first, an innovative heuristic algorithm for 3D warehouse cargo modeling using multidimensional tensors, which addresses the challenge of achieving superior heuristic accuracy; second, integration of a congestion-aware loss function within the ACO framework to adjust path costs based on traffic and capacity constraints, called CARL (Congestion-Aware Reinforce Loss), enabling dynamic heuristic calibration for optimizing ACO-based path planning; and third, an adaptive attention mechanism that captures multi-scale spatial features, thereby addressing dynamic heuristic calibration for further optimization of ACO-based path planning and AGV navigation. NAHACO significantly boosts path planning efficiency, yielding faster computation times and superior performance over both vanilla and state-of-the-art methods, while automatically adapting to warehouse constraints for real-time optimization. NAHACO outperforms state-of-the-art methods, lowering the total cost by up to 24.7% on TSP benchmarks. In warehouse tests, NAHACO cuts cost by up to 41.5% and congestion by up to 56.1% compared to previous methods.
Related papers
- Improved particle swarm optimization algorithm: multi-target trajectory optimization for swarm drones [20.531764063763678]
Traditional Particle Swarm Optimization (PSO) methods struggle with premature convergence and latency in real-time scenarios.<n>We propose PE-PSO, an enhanced PSO-based online trajectory planner.<n>We develop a multi-agent framework that combines genetic algorithm (GA)-based task allocation with distributed PE-PSO, supporting scalable and coordinated trajectory generation.
arXiv Detail & Related papers (2025-07-18T04:31:49Z) - Accelerating Vehicle Routing via AI-Initialized Genetic Algorithms [55.78505925402658]
Vehicle Routing Problems (VRP) are an extension of the Traveling Salesperson Problem and are a fundamental NP-hard challenge in Evolutionary optimization.
We introduce a novel optimization framework that uses a reinforcement learning agent - trained on prior instances - to quickly generate initial solutions, which are then further optimized by genetic algorithms.
For example, EARLI handles vehicle routing with 500 locations within 1s, 10x faster than current solvers for the same solution quality, enabling applications like real-time and interactive routing.
arXiv Detail & Related papers (2025-04-08T15:21:01Z) - Optimal Transport Adapter Tuning for Bridging Modality Gaps in Few-Shot Remote Sensing Scene Classification [80.83325513157637]
Few-Shot Remote Sensing Scene Classification (FS-RSSC) presents the challenge of classifying remote sensing images with limited labeled samples.<n>We propose a novel Optimal Transport Adapter Tuning (OTAT) framework aimed at constructing an ideal Platonic representational space.
arXiv Detail & Related papers (2025-03-19T07:04:24Z) - A Coalition Game for On-demand Multi-modal 3D Automated Delivery System [4.378407481656902]
We introduce a multi-modal autonomous delivery optimization framework as a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks.
The framework addresses last-mile delivery in urban environments, including high-density areas, road-based routing, and real-world operational challenges.
arXiv Detail & Related papers (2024-12-23T03:50:29Z) - SCoTT: Wireless-Aware Path Planning with Vision Language Models and Strategic Chains-of-Thought [78.53885607559958]
A novel approach using vision language models (VLMs) is proposed for enabling path planning in complex wireless-aware environments.<n>To this end, insights from a digital twin with real-world wireless ray tracing data are explored.<n>Results show that SCoTT achieves very close average path gains compared to DP-WA* while at the same time yielding consistently shorter path lengths.
arXiv Detail & Related papers (2024-11-27T10:45:49Z) - ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - Towards Robust Spacecraft Trajectory Optimization via Transformers [17.073280827888226]
We develop an autonomous generative model to solve non- optimal control problems in real-time.<n>We extend the capabilities of ART to address robust chance-constrained optimal control problems.<n>This work marks an initial step toward the reliable deployment of AI-driven solutions in safety-critical autonomous systems such as spacecraft.
arXiv Detail & Related papers (2024-10-08T00:58:42Z) - Adaptive traffic signal safety and efficiency improvement by multi objective deep reinforcement learning approach [0.0]
This research introduces an innovative method for adaptive traffic signal control (ATSC) through the utilization of multi-objective deep reinforcement learning (DRL) techniques.
The proposed approach aims to enhance control strategies at intersections while simultaneously addressing safety, efficiency, and decarbonization objectives.
arXiv Detail & Related papers (2024-08-01T13:10:41Z) - Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II [52.083337333478674]
This paper proposes a weight-aware deep reinforcement learning (WADRL) approach designed to address the multiobjective vehicle routing problem with time windows (MOVRPTW)
The Non-dominated sorting genetic algorithm-II (NSGA-II) method is then employed to optimize the outcomes produced by the WADRL.
arXiv Detail & Related papers (2024-07-18T02:46:06Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - Integrating Higher-Order Dynamics and Roadway-Compliance into
Constrained ILQR-based Trajectory Planning for Autonomous Vehicles [3.200238632208686]
Trajectory planning aims to produce a globally optimal route for Autonomous Passenger Vehicles.
Existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories.
We augment this model by higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk.
arXiv Detail & Related papers (2023-09-25T22:30:18Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
This paper studies the problem of the trajectory design for a group of energyconstrained drones operating in dynamic wireless network environments.
A value based reinforcement learning (VDRL) solution and a metatraining mechanism is proposed.
arXiv Detail & Related papers (2020-12-06T01:30:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.