論文の概要: Enhancing LLMs in Long Code Translation through Instrumentation and Program State Alignment
- arxiv url: http://arxiv.org/abs/2504.02017v1
- Date: Wed, 02 Apr 2025 13:55:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-04 12:57:43.088217
- Title: Enhancing LLMs in Long Code Translation through Instrumentation and Program State Alignment
- Title(参考訳): エンハンスメントとプログラム状態アライメントによる長期コード翻訳におけるLLMの強化
- Authors: Li Xin-Ye, Du Ya-Li, Li Ming,
- Abstract要約: コード翻訳は、機能を保ちながらプログラミング言語間でコードを変換することを目的としている。
大規模言語モデル(LLM)の最近の進歩はコード翻訳を改善しているが、課題は残る。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Code translation aims to transform code between programming languages while preserving functionality, with applications in cross-platform development and software migration. Recent advances in Large Language Models (LLMs) have improved code translation, but challenges remain, particularly in inferring program functionality. These issues worsen with longer and more complex code, where current LLMs struggle to handle length and intricate semantics. To evaluate LLMs on long code translation, we introduce LongTrans, a large-scale execution-based benchmark with C++, Java, and Python programs, ranging from hundreds to thousands of tokens. Our empirical study of 12 LLMs reveals a sharp performance decline as code length increases, with even the best-performing model, GPT-4o, achieving only 57.51% computational accuracy. This highlights the need for further research in long code translation. We argue that code translation should maintain invariant functionality while transforming syntax and keywords across languages. Despite differences in appearance, program states should remain consistent throughout execution. To address this, we propose PAST (Program State Alignment augmented Translation), which integrates instrumentation to capture and align program states during translation. This approach is the first to leverage LLMs to insert instrumentation in both original and translated code, tracing program states at runtime. By prompting the LLM to correct errors based on output traces, we mitigate inconsistencies and enhance translation accuracy. Experimental results show significant improvements, with computational accuracy rising from 57.51% to 84.70% for GPT-4o, 50.68% to 69.97% for Mistral-Large-2, and 52.45% to 76.43% for DeepSeek-Coder-V2. These improvements are consistent across models and datasets, with ablation studies confirming the benefits of instrumentation and state alignment.
- Abstract(参考訳): コード翻訳は、クロスプラットフォーム開発やソフトウェアマイグレーションに応用した、機能を維持しながらプログラミング言語間のコード変換を目的としている。
LLM(Large Language Models)の最近の進歩はコード翻訳を改善しているが、特にプログラム機能の推論において課題は残る。
これらの問題は、現在のLLMが長さと複雑な意味論を扱うのに苦労している、より長く複雑なコードによって悪化した。
長いコード翻訳においてLLMを評価するために,C++,Java,Pythonプログラムを備えた大規模実行ベースのベンチマークであるLongTransを紹介した。
実験により,コード長の増加に伴い,12 LLMの高速な性能低下が明らかとなり,最高性能モデルである GPT-4o さえも,計算精度は57.51% に留まった。
このことは、長いコード翻訳のさらなる研究の必要性を強調している。
我々は、構文やキーワードを言語に変換しながら、コード翻訳が不変の機能を維持するべきだと主張している。
外観の違いにもかかわらず、プログラム状態は実行中一貫して維持されるべきである。
そこで本研究では,PAST(Program State Alignment augmented Translation)を提案する。
このアプローチは、LLMを活用してオリジナルのコードと翻訳されたコードの両方にインスツルメンテーションを挿入し、実行時にプログラム状態をトレースする最初の方法である。
出力トレースに基づく誤り訂正をLCMに促すことで,不整合を緩和し,翻訳精度を向上させる。
実験の結果、計算精度は57.51%から84.70%に向上し、50.68%から69.97%がMistral-Large-2、52.45%から76.43%がDeepSeek-Coder-V2に向上した。
これらの改善はモデルとデータセット間で一貫性があり、アブレーション研究はインスツルメンテーションと状態アライメントの利点を確認している。
関連論文リスト
- Scalable, Validated Code Translation of Entire Projects using Large Language Models [13.059046327936393]
大規模言語モデル(LLM)は、慣用的なコードを生成する能力のため、コード翻訳において有望であることを示す。
既存の作品では、100行以上のコードに対する翻訳の成功率が低下している。
私たちは、コードを独立した翻訳が可能な小さなコードフラグメントに分割する、トランスフォーメーションのためのモジュラーアプローチを開発しています。
我々は,最大6,600行のコードと369の関数に対して,信頼性の高いRustを一貫して生成できることを示し,平均73%の関数をI/O同値で検証した。
論文 参考訳(メタデータ) (2024-12-11T02:31:46Z) - Unraveling the Potential of Large Language Models in Code Translation: How Far Are We? [4.616570111453259]
大規模言語モデル(LLM)は様々なタスクにおいて最先端のパフォーマンスを示すが、コード翻訳には苦労する。
コード翻訳タスクにおけるLLMの能力と能力を利用するための大規模な実証的研究を行う。
提案手法は,(1)ソースと対象言語間の中間言語を選択する中間翻訳と,(2)自己生成並列データ上でLPMを微調整する自己学習である。
論文 参考訳(メタデータ) (2024-10-13T12:20:12Z) - Multilingual Contrastive Decoding via Language-Agnostic Layers Skipping [60.458273797431836]
対照的なレイヤ(DoLa)によるデコーディングは、大規模言語モデルの生成品質を改善するために設計されている。
このアプローチは英語以外のタスクではうまくいきません。
モデルの前方通過における言語遷移に関する従来の解釈可能性の研究から着想を得て,改良されたコントラスト復号アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-15T15:14:01Z) - Towards Translating Real-World Code with LLMs: A Study of Translating to Rust [13.743967357458287]
大規模言語モデル(LLM)は、ほとんどのプログラミング言語でコードを記述する能力のため、コード翻訳において有望であることを示す。
実世界のオープンソースプロジェクトから抽出したコードについて検討する。
FLOURINEは、差分ファジィを使用して、Rust翻訳が元のソースプログラムと同等のI/Oかどうかをチェックする、エンドツーエンドのコード変換ツールである。
論文 参考訳(メタデータ) (2024-05-19T10:54:03Z) - Exploring and Unleashing the Power of Large Language Models in Automated Code Translation [40.25727029618665]
本稿では,自動翻訳タスクのための多種多様なLLMと学習ベーストランスパイラについて検討する。
UniTrans は、様々な LLM に適用可能な統一コード翻訳フレームワークである。
最近の3つのLLMはUniTransでテストされており、いずれも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-23T00:49:46Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
オフターゲット翻訳は、特に低リソース言語では未解決の問題である。
最近の研究は、翻訳命令の機能を強調するために高度なプロンプト戦略を設計するか、LLMの文脈内学習能力を活用している。
本研究では,LLMの命令追従能力(特に翻訳方向)を向上させるために,2段階の微調整アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-03-21T13:47:40Z) - Salute the Classic: Revisiting Challenges of Machine Translation in the
Age of Large Language Models [91.6543868677356]
ニューラルネットワーク翻訳の進化は、6つのコア課題の影響を受けている。
これらの課題には、ドメインミスマッチ、並列データの量、まれな単語予測、長文の翻訳、単語アライメントとしてのアテンションモデル、そして準最適ビームサーチが含まれる。
この研究はこれらの課題を再考し、先進的な大規模言語モデルにおけるそれらの継続的な関連性についての洞察を提供する。
論文 参考訳(メタデータ) (2024-01-16T13:30:09Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
LLM-STは,事前学習型大言語モデル(LLM)に基づいて構築された,新規で効果的な音声翻訳モデルである。
大規模言語モデル(LLM)を音声エンコーダと統合し、マルチタスクの命令チューニングを利用することで、LLM-STは正確なタイムスタンプと翻訳を生成することができる。
英語と中国語のデータセットの厳密な実験を通じて,LLM-STの異常な性能を示す。
論文 参考訳(メタデータ) (2023-12-21T05:32:49Z) - CodeFuse-13B: A Pretrained Multi-lingual Code Large Language Model [58.127534002232096]
本稿では,オープンソースの事前学習型LLMであるCodeFuse-13Bを紹介する。
英語と中国語の両方のプロンプトによるコード関連のタスク用に特別に設計されている。
CodeFuseは、高品質な事前トレーニングデータセットを利用することで、その効果を達成する。
論文 参考訳(メタデータ) (2023-10-10T02:38:44Z) - Lost in Translation: A Study of Bugs Introduced by Large Language Models
while Translating Code [5.915447908295047]
コード翻訳における一般LLMとコードLLMの能力について,大規模な実証的研究を行った。
私たちの研究は、3つのベンチマークと2つの実世界のプロジェクトからの1,700のコードサンプルの翻訳に関するものです。
LLMの正しい翻訳は2.1%から47.3%であることがわかった。
論文 参考訳(メタデータ) (2023-08-06T13:33:13Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。