Extending quantum annealing to continuous domains: a hybrid method for quadratic programming
- URL: http://arxiv.org/abs/2504.02073v1
- Date: Wed, 02 Apr 2025 19:09:59 GMT
- Title: Extending quantum annealing to continuous domains: a hybrid method for quadratic programming
- Authors: Hristo N. Djidjev,
- Abstract summary: We propose Quantum Enhanced Simulated Annealing (QESA) to tackle continuous optimization problems.<n>QESA uses quantum resources without requiring discretization.<n>We show that QESA consistently outperforms classical baselines in solution quality.
- Score: 1.0878040851638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose Quantum Enhanced Simulated Annealing (QESA), a novel hybrid optimization framework that integrates quantum annealing (QA) into simulated annealing (SA) to tackle continuous optimization problems. While QA has shown promise in solving binary problems such as those expressed in Ising or QUBO form, its direct applicability to real-valued domains remains limited. QESA bridges this gap by using QA to select discrete search directions that guide SA through the continuous solution space, enabling the use of quantum resources without requiring full problem discretization. We demonstrate QESA's effectiveness on box-constrained quadratic programming (QP) problems, a class of non-convex optimization tasks that frequently arise in practice. Experimental results show that QESA consistently outperforms classical baselines in solution quality, particularly on larger and more ill-conditioned problems, while maintaining competitive runtime. As quantum annealing hardware matures, QESA offers a scalable and flexible strategy for leveraging quantum capabilities in continuous optimization.
Related papers
- Solving Constrained Combinatorial Optimization Problems with Variational Quantum Imaginary Time Evolution [4.266376725904727]
We show that VarQITE achieves significantly lower mean optimality gaps compared to other conventional methods.
We demonstrate that scaling the Hamiltonian can further reduce optimization costs and accelerate convergence.
arXiv Detail & Related papers (2025-04-17T03:09:37Z) - A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems [4.266376725904727]
We introduce a comprehensive benchmarking framework designed to evaluate quantum optimization techniques against well-established NP-hard problems.<n>Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP)
arXiv Detail & Related papers (2025-03-15T13:02:22Z) - Multi-objective Quantum Annealing approach for solving flexible job shop
scheduling in manufacturing [0.0]
This paper introduces Quantum Annealing-based solving algorithm (QASA) to address Flexible Job Shop Scheduling problem.
Experiments on benchmark problems show QASA, combining tabu search, simulated annealing, and Quantum Annealing, outperforms a classical solving algorithm (CSA) in solution quality.
arXiv Detail & Related papers (2023-11-16T07:45:57Z) - Test Case Minimization with Quantum Annealers [0.0]
Theoretically, quantum annealers can outperform classical computers.
Small-scale, i.e., they have limited quantum bits (qubits)
We propose BootQA, the very first effort at solving the test case (TCM) problem with QA.
arXiv Detail & Related papers (2023-08-10T11:31:53Z) - Matching Game for Optimized Association in Quantum Communication
Networks [65.16483325184237]
This paper proposes a swap-stable request-QS association algorithm for quantum switches.
It achieves a near-optimal (within 5%) performance in terms of the percentage of served requests.
It is shown to be scalable and maintain its near-optimal performance even when the size of the QCN increases.
arXiv Detail & Related papers (2023-05-22T03:39:18Z) - Scaling Limits of Quantum Repeater Networks [62.75241407271626]
Quantum networks (QNs) are a promising platform for secure communications, enhanced sensing, and efficient distributed quantum computing.
Due to the fragile nature of quantum states, these networks face significant challenges in terms of scalability.
In this paper, the scaling limits of quantum repeater networks (QRNs) are analyzed.
arXiv Detail & Related papers (2023-05-15T14:57:01Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Q-Match: Iterative Shape Matching via Quantum Annealing [64.74942589569596]
Finding shape correspondences can be formulated as an NP-hard quadratic assignment problem (QAP)
This paper proposes Q-Match, a new iterative quantum method for QAPs inspired by the alpha-expansion algorithm.
Q-Match can be applied for shape matching problems iteratively, on a subset of well-chosen correspondences, allowing us to scale to real-world problems.
arXiv Detail & Related papers (2021-05-06T17:59:38Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.